23. 某年级组织学生参加夏令营活动.本次夏令营分为甲.乙.丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况.请你根据图中的信息回答下列问题: (1)该年级报名参加丙组的人数为 , (2)该年级报名参加本次活动的总人数 .并补全频数分布直方图: (3)根据实际情况.需从甲组抽调部分同学到丙组.使丙组人数是甲组人数的3倍.应从甲组抽调多少名学生到丙组? 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)
如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中半⊙P与数轴相切于点A,且此时△MPA为等边三角形.
解答下列问题:(各小问结果保留π)
(1)位置Ⅰ中的点O到直线MN的距离为   
位置Ⅱ中的半⊙P与数轴的位置关系是     
(2)位置Ⅲ中的圆心P在数轴上表示的数为   
(3)求OA的长.

查看答案和解析>>

(本小题满分10分)

如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中半⊙P与数轴相切于点A,且此时△MPA为等边三角形.

解答下列问题:(各小问结果保留π)

(1)位置Ⅰ中的点O到直线MN的距离为   

位置Ⅱ中的半⊙P与数轴的位置关系是     

(2)位置Ⅲ中的圆心P在数轴上表示的数为   

(3)求OA的长.

 

 

查看答案和解析>>

(本小题满分10分)

如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中半⊙P与数轴相切于点A,且此时△MPA为等边三角形.

解答下列问题:(各小问结果保留π)

(1)位置Ⅰ中的点O到直线MN的距离为   

位置Ⅱ中的半⊙P与数轴的位置关系是     

(2)位置Ⅲ中的圆心P在数轴上表示的数为   

(3)求OA的长.

 

 

查看答案和解析>>

(本小题满分10分)
如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中半⊙P与数轴相切于点A,且此时△MPA为等边三角形.
解答下列问题:(各小问结果保留π)
(1)位置Ⅰ中的点O到直线MN的距离为   
位置Ⅱ中的半⊙P与数轴的位置关系是     
(2)位置Ⅲ中的圆心P在数轴上表示的数为   
(3)求OA的长.

查看答案和解析>>

(本小题满分10分)
如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.
⑴求证:ME = MF.
⑵如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
⑶如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.
⑷根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.

查看答案和解析>>


同步练习册答案