28.本题9分 如图①.直线与抛物线交于A.B两点. (1)求A.B两点的坐标. (2)求线段AB的垂直平分线的解析式. (3)如图②.取与线段AB等长的一根橡皮筋.端点分别固定在A.B两处.用铅笔拉着这根橡皮筋.使笔尖P在直线AB上方的抛物线上移动.动点P将与A.B构成无数多个三角形. 这些三角形中是否存在一个面积最大的三角形?如果存在.求出最大面积.并指出此时P点的坐标,如果不存在.请简要说明理由. 查看更多

 

题目列表(包括答案和解析)

如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于点A,交x轴的负半轴交于点B,交y轴的正半轴于点C ,过点C的直线交x轴的负半轴于点D(-9,0)
(1) 求A、C两点的坐标;
(2) 求证:直线CD是⊙M的切线;
(3) 若抛物线y=x2+bx+c经过M、A两点,求此抛物线的解析式;
(4) 连接AC,若(3)中抛物线的对称轴分别与直线CD交于点E,与AC交于点F。如果点P是抛物线上的动点,是否存在这样的点P,使得S△PAM:S△CEF=:3,若存在,请求出此时点P的坐标;若不存在,请说明理由。 (本题中的结果均保留根号)

查看答案和解析>>

(本题12分) 如图,已知二次函数的图象与轴交于点,与轴交于点,其顶点为,且直线的解析式为

1.(1) 求二次函数的解析式.

2.(2) 求△ABC外接圆的半径及外心的坐标;

3.(3) 若点P是第一象限内抛物线上一动点,求四边形ACPB的面积最大值.

 

查看答案和解析>>

(本题12分)如图,一抛物线的顶点A为(2,-1),交x轴于B、C(B左C右)两点,交y轴于点D,且B(1,0),坐标原点为O,

(1)求抛物线解析式.

(2)连接CD、BD,在x轴上确定点E,使以A、C、E为顶点的三角形与△CBD相似,并求出点E的坐标.

(3)若点M(m,1)是抛物线上对称轴右侧的一点,点Q也在抛物线上,点P在x轴上,是否存在以O、M、P、Q为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

28. (本题12分)如图,一抛物线的顶点A为(2,-1),交x轴于B、C(B左C右)两点,交y轴于点D,且B(1,0),坐标原点为O,

(1)求抛物线解析式.

(2)连接CD、BD,在x轴上确定点E,使以A、C、E为顶点的三角形与△CBD相似,并求出点E的坐标.

(3)若点M(m,1)是抛物线上对称轴右侧的一点,点Q也在抛物线上,点P在x轴上,是否存在以O、M、P、Q为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

1. (本题满分7分)

将直角边长为6的等腰RtAOC放在如图所示的平面直角坐标系中,点O为坐标原点,点CA分别在xy轴的正半轴上,一条抛物线经过点AC及点B(–3,0).

1.(1)求该抛物线的解析式;

2.(2)若点P是线段BC上一动点,过点PAB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;

3.(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案