正方形ABCD的边长为a.点E为AB边上的任意一点.以BE为一边做正方形EFGB.联接AF. 求证:△AFC的面积是. 20 如图所示.要把破残的圆片复制完整.已知弧上的三点. (1) 用尺规作图法找出BAC所在圆的圆心.(保留作图痕迹.不写作法) (2) 设是等腰三角形.底边cm.腰cm.求圆片的半径. 查看更多

 

题目列表(包括答案和解析)

如图,正方形ABCD的边长为4.点E在边AB上,且AE=1.点F为边CD上一动点,且DF=m.以A为原点,AB所在直线为x轴建立平面直角坐标系.

(1)连接EF,求四边形AEFD的面积s关于m的函数关系式;

(2)若直线EF将正方形ABCD分成面积相等的两部分.求此时直线EF对应的函数关系式;

(3)在正方形ABCD的边上是否存在点P,使△PCE是等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(本题9分)

   

查看答案和解析>>

如图正方形ABCD和正方形EFGH,F和B重合,EF在AB上,连DH(本题14分)
⑴、由图⑴易知,
①线段AE=CG, AE和CG所在直线互相垂直,且此时易求得②         
⑵、若把正方形EFGH绕F点逆时针旋转度(图2),⑴中的两个结论是否仍然成立?若成立,选择其中一个加以证明,若不成立,请说明理由。
⑶、若把图⑴中的正方形EFGH沿BD方向以每秒1cm的速度平移,设平移时间为x秒,正方形ABCD和正方形EFGH的边长分别为5cm和1cm,
①在平移过程中,△AFH是否会成为等腰三角形?若能求出x的值,若不能,说明理由.
②在平移过程中,△AFH是否会成为等边三角形?若能求出x的值,若不能,设正方形ABCD和正方形EFGH的边长分别为acm和bcm,则当a、b满足什么关系时,△AFH可以成为等边三角形.

查看答案和解析>>

如图正方形ABCD和正方形EFGH,F和B重合,EF在AB上,连DH(本题14分)

⑴、由图⑴易知,

①线段AE=CG, AE和CG所在直线互相垂直,且此时易求得②         

⑵、若把正方形EFGH绕F点逆时针旋转度(图2),⑴中的两个结论是否仍然成立?若成立,选择其中一个加以证明,若不成立,请说明理由。

⑶、若把图⑴中的正方形EFGH沿BD方向以每秒1cm的速度平移,设平移时间为x秒,正方形ABCD和正方形EFGH的边长分别为5cm和1cm,

①在平移过程中,△AFH是否会成为等腰三角形?若能求出x的值,若不能,说明理由.

②在平移过程中,△AFH是否会成为等边三角形?若能求出x的值,若不能,设正方形ABCD和正方形EFGH的边长分别为acm和bcm,则当a、b满足什么关系时,△AFH可以成为等边三角形.

 

查看答案和解析>>

如图正方形ABCD和正方形EFGH,F和B重合,EF在AB上,连DH(本题14分)
⑴、由图⑴易知,
①线段AE=CG, AE和CG所在直线互相垂直,且此时易求得②         
⑵、若把正方形EFGH绕F点逆时针旋转度(图2),⑴中的两个结论是否仍然成立?若成立,选择其中一个加以证明,若不成立,请说明理由。
⑶、若把图⑴中的正方形EFGH沿BD方向以每秒1cm的速度平移,设平移时间为x秒,正方形ABCD和正方形EFGH的边长分别为5cm和1cm,
①在平移过程中,△AFH是否会成为等腰三角形?若能求出x的值,若不能,说明理由.
②在平移过程中,△AFH是否会成为等边三角形?若能求出x的值,若不能,设正方形ABCD和正方形EFGH的边长分别为acm和bcm,则当a、b满足什么关系时,△AFH可以成为等边三角形.

查看答案和解析>>

(本题满分12分)如图,已知直线交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.

1.(1)填空:点A的坐标为           ,点B的坐标为           ,AB的长为           

2.(2)求点C、D的坐标

3.(3)求抛物线的解析式

4.(4)若抛物线与正方形沿射线AB下滑,直至点C落在轴上时停止,则抛物线上C、E两点间的抛物线所扫过的面积为           

 

查看答案和解析>>


同步练习册答案