15.方程化为一般形式为 .其中... 查看更多

 

题目列表(包括答案和解析)

方程2x(x-1)=3(x+3)-4化为一般形式是(    ),其中b2-4ac=(    )。

查看答案和解析>>

把方程x(x+2)=5(x-2)化成一元二次方程的一般形式为(    ),其中二次项系数与一次项系数之和为(    )。

查看答案和解析>>

注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以仿照这个思路填空,并完成本题解答的全过程,如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可。
如图(1),要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x,为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图(2)的情况,得到矩形ABCD,结合以上分析完成填空:
如图(2),用含x的代数式表示:AB=____cm;AD=____cm;
矩形ABCD的面积为____cm2
列出方程并完成本题解答

查看答案和解析>>

我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透。
数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案。
例如,求1+2+3+4+…+n的值,其中n是正整数。
对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论。
如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观,现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值,为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形,此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=

(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中 n 是正整数;(要求:画出图形,并利用图形做必要的推理说明)
(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数。(要求:画出图形,并利用图形做必要的推理说明)

查看答案和解析>>

我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”。数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透。数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案。例如,求1+2+3+4+…+n的值,其中n是正整数。对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论。如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观。现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的。而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值。为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形。此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=
(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数(要求:画出图形,并利用图形做必要的推理说明)。
(2)试设计另外一种图形,求1+3+5+7+…+(2n-1)的值,其中n是正整数(要求:画出图形,并利用图形做必要的推理说明)。

查看答案和解析>>


同步练习册答案