题目列表(包括答案和解析)
(本题满分10分)如图所示,过点F(0,1)的直线y=kx+b与抛物线y= x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2<0).
(1)求b的值.
(2)求x1•x2的值
(3)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论.
(4) 对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.
(本题满分8分)
如图所示,一次函数与反比例函数的图象相交于A,B两点,且与坐标轴的交点为,,点B的横坐标为.
(1)试确定反比例函数的解析式;
(2)求△AOB的面积;
(3)直接写出不等式的解.
(本题满分11分)
如图所示,⊙的直径,和是它的两条切线,为射线上的动点(不与重合),切⊙于,交于,设.
(1)求与的函数关系式;
(2)若⊙与⊙外切,且⊙分别与
相切于点,求为何值时⊙半径为1.
(本题满分8分)
如图所示,AB//CD,∠ACD=.
⑴用直尺和圆规作∠C的平分线CE,交AB于E,并在CD
上取一点F,使AC=AF,再连接AF,交CE于K;
(要求保留作图痕迹,不必写出作法)
⑵依据现有条件,直接写出图中所有相似的三角形﹒
(图中不再增加字母和线段,不要求证明)
(本题满分10分)如图所示,过点F(0,1)的直线y=kx+b与抛物线y= x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2<0).
(1)求b的值.
(2)求x1•x2的值
(3)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论.
(4) 对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com