22.P是等边三角形ABC内的一点.连接PA.PB.PC.以BP为边作∠PBQ=60°.且BQ=BP.连接CQ.观察并猜想AP与CQ之间的大小关系.并证明你的结论. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,P是等边三角形ABC内的一点,连接PA、PB、PC,以BP为边作等边三角形BPM,连接CM.
(1)观察并猜想AP与CM之间的大小关系,并说明你的结论;
(2)若PA=PB=PC,则△PMC是
 
三角形;
(3)若PA:PB:PC=1:
2
3
,试判断△PMC的形状,并说明理由.

查看答案和解析>>

26、如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.
(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;
(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.

查看答案和解析>>

18、如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.观察并猜想AP与CQ之间的大小关系,并证明你的结论.试说明△ABP经过怎样变换可得到△CBQ.

查看答案和解析>>

如图,P是等边三角形ABC内的一点,连接PA、PB、PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.
(1)观察并猜想AP与CQ之间的大小关系,并说明理由.
(2)若PA=3,PB=4,PC=5,∠BQC=
150°
150°
.(请直接写出∠BQC的度数)

查看答案和解析>>

如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.
(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;
(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.

查看答案和解析>>


同步练习册答案