27.已知:如图.一条直线.与X轴正半轴交于点A.与Y轴正半轴交于点B.△AOB是等腰三角形.且面积等于8. (1)求这条直线的解析式, (2)若动点P从A点出发沿X轴向原点O运动.动点Q从O点出发沿Y轴向B点运动.两点同时出发且运动速度相同,若点M是线段AB的中点.试判断△MPQ的形状.并说明理由. 查看更多

 

题目列表(包括答案和解析)

已知:如图,一条直线,与X轴正半轴交于点A,与Y轴正半轴交于点B,△AOB是等腰三角形,且面积等于8.

   (1)求这条直线的解析式;

   (2)若动点P从A点出发沿X轴向原点O运动,动点Q从O点出发沿Y轴向B点运动,两点同时出发且运动速度相同;若点M是线段AB的中点,试判断△MPQ的形状,并说明理由。

                      

查看答案和解析>>

精英家教网已知:如图,抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3)、B(-1,5)三点.
(1)求抛物线的解析式.
(2)设抛物线与x轴的另一个交点为C.以OC为直径作⊙M,如果过抛物线上一点P作⊙M的切线PD,切点为D,且y轴的正半轴交于点为E,连接MD.已知点E的坐标为(0,m),求四边形EOMD的面积.(用含m的代数式表示)
(3)延长DM交⊙M于点N,连接ON、OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形EOMD=S△DON?请求出此时点P的坐标.

查看答案和解析>>

已知:如图,抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3)、B(-1,5)三点.
(1)求抛物线的解析式.
(2)设抛物线与x轴的另一个交点为C.以OC为直径作⊙M,如果过抛物线上一点P作⊙M的切线PD,切点为D,且y轴的正半轴交于点为E,连接MD.已知点E的坐标为(0,m),求四边形EOMD的面积.(用含m的代数式表示)
(3)延长DM交⊙M于点N,连接ON、OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形EOMD=S△DON?请求出此时点P的坐标.

查看答案和解析>>

已知:如图,抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3)、B(-1,5)三点.
(1)求抛物线的解析式.
(2)设抛物线与x轴的另一个交点为C.以OC为直径作⊙M,如果过抛物线上一点P作⊙M的切线PD,切点为D,且y轴的正半轴交于点为E,连接MD.已知点E的坐标为(0,m),求四边形EOMD的面积.(用含m的代数式表示)
(3)延长DM交⊙M于点N,连接ON、OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形EOMD=S△DON?请求出此时点P的坐标.

查看答案和解析>>

已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且AB=2.

(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒 ;设,当t 为何值时,s有最小值,并求出最小值。
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案