2.下面给出的两个图形中:①两个等腰三角形,②两个直角三角形,③两个正方形,④两个矩形,⑤两个菱形 ,⑥两个正五边形. 其中一定相似的有( ) A.2组 B.3组 C.4组 D.5组 查看更多

 

题目列表(包括答案和解析)

阅读下面的题目及分析过程,并按要求进行证明。
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE
求证:AB=CD
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等。因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形。现给出如下三种添加辅助线的方法,请对原题进行证明。
(1)延长DE到F使得EF=DE;
(2) 作CG⊥DE于G,BF⊥DE于F交DE的延长线于F ;
(3) 过C点作CF∥AB,交DE的延长线于F 

查看答案和解析>>

阅读下面的题目及分析过程,并按要求进行证明.

已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.

求证:AB=CD.

分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.

现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.

查看答案和解析>>

(1)已知,如图△ABC中,∠A=90°,∠B=67.5°.请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来,只需画图,不必说明理由,但要在图中标出相等两角的度数)

(2)已知:在△ABC中,∠C是其最小的内角,过点B的一条直线BD把这个三角形分割成两个等腰三角形,直线BD交AC边于点D.
①若∠C是△BCD的顶角,请探求∠ABC与∠C之间的关系;
②若∠C是△BCD的底角,∠BDC是△BCD的顶角.请探求∠ABC与∠C之间的关系;
③是否存在∠C是底角且∠CBD是顶角的等腰△BCD?若存在,请探求∠ABC与∠C之间的关系;若不存在,说明理由.

查看答案和解析>>

(1)已知,如图△ABC中,∠A=90°,∠B=67.5°.请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来,只需画图,不必说明理由,但要在图中标出相等两角的度数)

(2)已知:在△ABC中,∠C是其最小的内角,过点B的一条直线BD把这个三角形分割成两个等腰三角形,直线BD交AC边于点D.
①若∠C是△BCD的顶角,请探求∠ABC与∠C之间的关系;
②若∠C是△BCD的底角,∠BDC是△BCD的顶角.请探求∠ABC与∠C之间的关系;
③是否存在∠C是底角且∠CBD是顶角的等腰△BCD?若存在,请探求∠ABC与∠C之间的关系;若不存在,说明理由.

查看答案和解析>>

(1)解不等式:,并将解集表示在数轴上.
(2)如图,在5×5的正方形网格中,每个小正方形的边长为1,请在所给的网格中按下列要求画出图形.
1)从点A出发的一条线段AB,使它的另一个端点在格点(即小正方形的顶点)上,且长度为
2)以(1)中的AB为边,且另两边的长为无理数的所有等腰三角形ABC;
3)以(1)中的AB为边的任意两个格点三角形,它们相似但不全等,并求出它们的面积比.

查看答案和解析>>


同步练习册答案