题目列表(包括答案和解析)
(本小题满分12分)
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n()个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.
现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1) 写出a1,a2,a3,并求出an;
(2) 记,求和();
(其中表示所有的积的和)
(3) 证明:.
(本小题满分12分)已知函数f(x)=x3+x2-2.
(1)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(2)求函数f(x)在区间(a-1,a)内的极值.
1. (本小题满分12分)
古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n()个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.
现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1) 写出a1,a2,a3,并求出an;
(2) 记,求和();
(其中表示所有的积的和)
(3) 证明:.
一、选择题(本大题12小题,每小题5分,共60分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
D
A
B
C
C
B
C
A
D
A
二、填空题(本大题共4小题,每小题4分,共16分)
13.4949; 14.[] 15.②④; 16.x<0或x>2
三、解答题(本大题共6小题共74分)
17.解(1)设,由,有x+y=-1 ①……………1分
与的夹角为,有,
∴,则x2+y2=1 ②……………2分
由①②解得,(-1,0)或(0,-1) ……………4分
(2)由2B=A+C知B= ……………5分
由垂直知(0,-1),则
……………6分
∴
=1+ ……………8分
∵0<A<
∴-1≤cos(2A+)<
即 ………………10分
故 ………………12分
18.解:(1)过点A作AF⊥CB交CB延长线于点F,连结EF,则AF,则AF⊥平面BCC1B1,∠AEF为所求直线AE与闰面BCC1B1所成的角. …………………2分
在Rt△AEF中,AF=∠AEF=
故直线AE与平面BCC1B1所成的角为arctan …………………6分
(2)以O为原点,OB为x轴,OC为y轴,建立空间直角坐标系O-xyz,则
A(0,-),E(0,),D1(-1,0,2)
…………………8分
设平面AED1的一个法向量则
取z=2,得=(3,-1,2)
∴点O到平面AED1的呀离为d= …………………12分
19.解(1)由(an+1+an+2+an+3)-(an+an+1+an+2)=1,
∴a1?a4,a7…,a3n-2是首项为1,公差为1的等差数列,
∴Pn= …………………4分
由
∴b2,b5,b8, …b3n-1是以1为首项,公比为-1的等比数列
∴Qn= …………………8分
(2)对于Pn≤100Qn
当n为偶数时,不等式显然不成立;
当n为奇数时, …………………12分
20.解(1)逐个计算,得
P(ξ=-16)=C; …………………1分
P(ξ=8)=C;
P(ξ=24)=C;
P(ξ=32)=C
故该储蓄所每天余额ξ的 分布列为:
……………………6分
(2)该一天余额ξ的期望Eξ=(-16)×(万元) …………9分
故储蓄所每天备用现金至少为14×2=28(万元) ……………………12分
答:为保证储户取款,储芳所每天备用现金少28万元。
21.解:(1)有f′(x)|x=1=1,故直线的斜率为1,切点为(1,f(1)),即(1,0)
∴直线l的方程为y=x-1. ……………………1分
直线l与y=g(x)的图像相切,等价于方程组只有一解,
即方程有两个相等实根,
∴△=1-4?有丙个相等实根,
(2)∵h(x)=ln(x+1)-x(x>-1),由h′(x)=
∵h′(x)>0,∴-1<x<0
∴当x∈(-1,0)时,f(x)是增函数.
即f(x)产单调递增区间为(-1,0). …………………6分
(3)令y1=f(1+x2)-g(x)=ln(1+x2)-
由y1′=
令y1′=0,则x=0,-1,1
当x变化时,y1′,y1的变化关系如下表;
x
(-∞,-1)
-1
(-1,0)
0
(0,1)
1
(1,+∞)
y′
+
0
-
0
+
0
-
y
ㄊ
极大值ln2
ㄋ
极小值1/2
ㄊ
极大值ln2
ㄋ
又因为y1=ln(1+x2)-为偶函数,据此可画
出y1=ln(1+x2)-示意图如下
当k∈(ln2,+∞)时,方程无解;
当k=ln2或k∈时,方程有两解;
当k=时,方程有三解;
当k∈()时,方程有四解. …………………12分
22.(1)设M(x,y),则由且O是原点得
A(2,0),B(2,1),C(0,1),从而(x,y),
由得(x,y)?(x-2,y)=k[(x,y-1)?(x-2,y-1)-|y-1|2]
即(1-k)x2+2(k-1)x+y2=0为所求轨迹方程 ………………4分
①当k=1时,y=0动点M的轨迹是一条直线
②当k≠1时,(x-1)2+
k=0时,动点M轨迹是一个圆
k>1时,动点M轨迹是一条双曲线;
0<k<1或k<0时轨迹是一个椭圆 ………………6分
(2)当k=时,动点M的轨迹方程为(x-1)2+2y2=1即y2=-(x-1)2
从而
又由(x-1)2+2y2=1 ∴0≤x≤2
∴当x=时,的最大值为.
当x=0时,的最大值为16.
∴的最大值为4,最小值为 …………………10分
(3)由由得
①当0<k<1时,a2=1,b2=1-k,c2=k
∴e2=k ∴
②当k<0时,e2=
∴k∈ …………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com