例1:已知.为空间中一点.且.则直线与平面所成角的正弦值为 . 查看更多

 

题目列表(包括答案和解析)

(四川延考理1)集合的子集中,含有元素的子集共有

(A)2个            (B)4个         (C)6个        (D)8个

查看答案和解析>>

(四川延考理1)集合的子集中,含有元素的子集共有

(A)2个            (B)4个         (C)6个        (D)8个

查看答案和解析>>

(四川延考文22)设函数

(Ⅰ)求的单调区间和极值;

(Ⅱ)若当时,,求的最大值.

查看答案和解析>>

(四川延考理22)设函数

(Ⅰ)求的单调区间和极值;

(Ⅱ)若对一切,求的最大值。

查看答案和解析>>

(四川延考文18)一条生产线上生产的产品按质量情况分为三类:类、类、类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有类产品或2件都是类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为类品,类品和类品的概率分别为,且各件产品的质量情况互不影响.

(Ⅰ)求在一次抽检后,设备不需要调整的概率;

(Ⅱ)若检验员一天抽检3次,求一天中至少有一次需要调整设备的概率.

查看答案和解析>>

1. 构造向量,所以.由数量积的性质,得,即的最大值为2.

2. ∵,令,所以,当时,,当时,,所以当时,.

3.∵,∴,又,∴,则,所以周期.作出上的图象知:若,满足条件的)存在,且关于直线对称,关于直线对称,∴;若,满足条件的)存在,且关于直线对称,关于直线对称,

4. 不等式)表示的区域是如图所示的菱形的内部,

,点到点的距离最大,此时的最大值为

,点到点的距离最大,此时的最大值为3.

5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有种情况.抽到5 和14的两人在同一组,有两种情况:

(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有种情况;

(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有种情况.

于是,抽到5 和14 两张卡片的两人在同一组的概率为.

6. ∵,∴

,则.

作出该不等式组表示的平面区域(图中的阴影部分).

,则,它表示斜率为的一组平行直线,易知,当它经过点时,取得最小值.

解方程组,得,∴


同步练习册答案