题目列表(包括答案和解析)
设函数,若
为函数
的一个极值点,则下列图象不可能为
的图象是
【答案】D
【解析】设,∴
,
又∴为
的一个极值点,
∴,即
,
∴,
当时,
,即对称轴所在直线方程为
;
当时,
,即对称轴所在直线方程应大于1或小于-1.
设抛物线:
(
>0)的焦点为
,准线为
,
为
上一点,已知以
为圆心,
为半径的圆
交
于
,
两点.
(Ⅰ)若,
的面积为
,求
的值及圆
的方程;
(Ⅱ)若,
,
三点在同一条直线
上,直线
与
平行,且
与
只有一个公共点,求坐标原点到
,
距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线于
轴的焦点为E,圆F的半径为
,
则|FE|=,
=
,E是BD的中点,
(Ⅰ) ∵,∴
=
,|BD|=
,
设A(,
),根据抛物线定义得,|FA|=
,
∵的面积为
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=, ∴圆F的方程为:
;
(Ⅱ) 解析1∵,
,
三点在同一条直线
上, ∴
是圆
的直径,
,
由抛物线定义知,∴
,∴
的斜率为
或-
,
∴直线的方程为:
,∴原点到直线
的距离
=
,
设直线的方程为:
,代入
得,
,
∵与
只有一个公共点,
∴
=
,∴
,
∴直线的方程为:
,∴原点到直线
的距离
=
,
∴坐标原点到,
距离的比值为3.
解析2由对称性设,则
点关于点
对称得:
得:,直线
切点
直线
坐标原点到距离的比值为
等轴双曲线的中心在原点,焦点在
轴上,
与抛物线
的准线交于
两点,
;则
的实轴长为( )
【解析】设等轴双曲线方程为,抛物线的准线为
,由
,则
,把坐标
代入双曲线方程得
,所以双曲线方程为
,即
,所以
,所以实轴长
,选C.
设函数f(x)= 的最大值为M,最小值为m,则M+m=____
【解析】,令
,则
为奇函数,对于一个奇函数来说,其最大值与最小值之和为0,即
,而
,
,所以
.
如图,直线与抛物线
交于
两点,与
轴相交于点
,且
.
(1)求证:点的坐标为
;
(2)求证:;
(3)求的面积的最小值.
【解析】设出点M的坐标,并把过点M的方程设出来.为避免对斜率不存在的情况进行讨论,可以设其方程为
,然后与抛物线方程联立消x,根据
,即可建立关于
的方程.求出
的值.
(2)在第(1)问的基础上,证明:即可.
(3)先建立面积S关于m的函数关系式,根据建立即可,然后再考虑利用函数求最值的方法求最值.
1. 构造向量,
,所以
,
.由数量积的性质
,得
,即
的最大值为2.
2. ∵,令
得
,所以
,当
时,
,当
时,
,所以当
时,
.
3.∵,∴
,
,又
,∴
,则
,所以周期
.作出
在
上的图象知:若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,∴
;若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,
∴
.
4. 不等式(
)表示的区域是如图所示的菱形的内部,
∵,
当,点
到点
的距离最大,此时
的最大值为
;
当,点
到点
的距离最大,此时
的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为.
6. ∵
,∴
,
设,
,则
.
作出该不等式组表示的平面区域(图中的阴影部分).
令,则
,它表示斜率为
的一组平行直线,易知,当它经过点
时,
取得最小值.
解方程组,得
,∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com