由椭圆定义.得.∴. 查看更多

 

题目列表(包括答案和解析)

定义:我们把椭圆的焦距与长轴的长度之比即,叫做椭圆的离心率.若两个椭圆的离心率相同,称这两个椭圆相似.
(1)判断椭圆与椭圆是否相似?并说明理由;
(2)若椭圆与椭圆相似,求的值;
(3)设动直线与(2)中的椭圆交于两点,试探究:在椭圆上是否存在异于的定点,使得直线的斜率之积为定值?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

                                 

已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为.

(1)求椭圆C的方程;

(2)设直线与椭圆C交于A、B两点,以弦为直径的圆过坐标原点,试探讨点到直线的距离是否为定值?若是,求出这个定值;若不是,说明理由.

已知函数

(1)讨论函数在定义域内的极值点的个数;

(2)若函数处取得极值,对,恒成立,

求实数的取值范围;

(3)当时,求证:

查看答案和解析>>

已知椭圆C:的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1以抛物线的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

我们常用定义解决与圆锥曲线有关的问题.如“设椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1,F2,过左焦点F1作倾斜角为θ的弦AB,设|F1A|=r1,|F1B|=r2,试证
1
r1
+
1
r2
为定值”.
证明如下:不妨设A在x轴的上方,在△ABC中,由椭圆的定义及余弦定理得,(2a-r12=r12+4c2-4cr1cosθ,∴r1=
b2
a-ccosθ

同理r2=
b2
a-ccos(π-θ)
=
b2
a+ccosθ
,于是
1
r
1
+
1
r
2
=
2a
b2
.请用类似的方法探索:设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1,F2,过左焦点F1作倾斜角为θ的直线与双曲线右支交于点A,左支交于点B,设|F1A|=r1,|F1B|=r2,是否有类似的结论成立,请写出与定值有关的结论是______..

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

1. 构造向量,所以.由数量积的性质,得,即的最大值为2.

2. ∵,令,所以,当时,,当时,,所以当时,.

3.∵,∴,又,∴,则,所以周期.作出上的图象知:若,满足条件的)存在,且关于直线对称,关于直线对称,∴;若,满足条件的)存在,且关于直线对称,关于直线对称,

4. 不等式)表示的区域是如图所示的菱形的内部,

,点到点的距离最大,此时的最大值为

,点到点的距离最大,此时的最大值为3.

5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有种情况.抽到5 和14的两人在同一组,有两种情况:

(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有种情况;

(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有种情况.

于是,抽到5 和14 两张卡片的两人在同一组的概率为.

6. ∵,∴

,则.

作出该不等式组表示的平面区域(图中的阴影部分).

,则,它表示斜率为的一组平行直线,易知,当它经过点时,取得最小值.

解方程组,得,∴


同步练习册答案