题目列表(包括答案和解析)
定义:我们把椭圆的焦距与长轴的长度之比即,叫做椭圆的离心率.若两个椭圆的离心率相同,称这两个椭圆相似.
(1)判断椭圆与椭圆是否相似?并说明理由;
(2)若椭圆与椭圆相似,求的值;
(3)设动直线与(2)中的椭圆交于两点,试探究:在椭圆上是否存在异于的定点,使得直线的斜率之积为定值?若存在,求出定点的坐标;若不存在,说明理由.
已知椭圆C:的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,以弦为直径的圆过坐标原点,试探讨点到直线的距离是否为定值?若是,求出这个定值;若不是,说明理由.
已知函数.
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在处取得极值,对,恒成立,
求实数的取值范围;
(3)当时,求证:.
x2 |
a2 |
y2 |
b2 |
1 |
r1 |
1 |
r2 |
b2 |
a-ccosθ |
b2 |
a-ccos(π-θ) |
b2 |
a+ccosθ |
1 |
r |
1 |
r |
2a |
b2 |
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
3 |
1 |
mn |
1. 构造向量,,所以,.由数量积的性质,得,即的最大值为2.
2. ∵,令得,所以,当时,,当时,,所以当时,.
3.∵,∴,,又,∴,则,所以周期.作出在上的图象知:若,满足条件的()存在,且,关于直线对称,,关于直线对称,∴;若,满足条件的()存在,且,关于直线对称,,关于直线对称,
∴.
4. 不等式()表示的区域是如图所示的菱形的内部,
∵,
当,点到点的距离最大,此时的最大值为;
当,点到点的距离最大,此时的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为.
6. ∵,∴,
设,,则.
作出该不等式组表示的平面区域(图中的阴影部分).
令,则,它表示斜率为的一组平行直线,易知,当它经过点时,取得最小值.
解方程组,得,∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com