[解析]由已知得.∴. 查看更多

 

题目列表(包括答案和解析)

已知

的值.

【解析】利用三角恒等变换得到函数值,

由于 

解析:   由    

 

查看答案和解析>>

已知在中,,解这个三角形;

【解析】本试题主要考查了正弦定理的运用。由正弦定理得到:,然后又       

再又得到c。

解:由正弦定理得到:

                      ……4分

      ……8分

    

 

查看答案和解析>>

求由抛物线与直线所围成图形的面积.

【解析】首先利用已知函数和抛物线作图,然后确定交点坐标,然后利用定积分表示出面积为,所以得到,由此得到结论为

解:设所求图形面积为,则

=.即所求图形面积为

 

查看答案和解析>>

已知指数函数,当时,有,解关于x的不等式

【解析】本试题主要考查了指数函数,对数函数性质的运用。首先利用指数函数,当时,有,,得到,从而

等价于,联立不等式组可以解得

解:∵ 时,有, ∴ 

于是由,得

解得, ∴ 不等式的解集为

 

查看答案和解析>>

已知,(其中

⑴求

⑵试比较的大小,并说明理由.

【解析】第一问中取,则;                         …………1分

对等式两边求导,得

,则得到结论

第二问中,要比较的大小,即比较:的大小,归纳猜想可得结论当时,

时,

时,

猜想:当时,运用数学归纳法证明即可。

解:⑴取,则;                         …………1分

对等式两边求导,得

,则。       …………4分

⑵要比较的大小,即比较:的大小,

时,

时,

时,;                              …………6分

猜想:当时,,下面用数学归纳法证明:

由上述过程可知,时结论成立,

假设当时结论成立,即

时,

时结论也成立,

∴当时,成立。                          …………11分

综上得,当时,

时,

时, 

 

查看答案和解析>>

1. 构造向量,所以.由数量积的性质,得,即的最大值为2.

2. ∵,令,所以,当时,,当时,,所以当时,.

3.∵,∴,又,∴,则,所以周期.作出上的图象知:若,满足条件的)存在,且关于直线对称,关于直线对称,∴;若,满足条件的)存在,且关于直线对称,关于直线对称,

4. 不等式)表示的区域是如图所示的菱形的内部,

,点到点的距离最大,此时的最大值为

,点到点的距离最大,此时的最大值为3.

5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有种情况.抽到5 和14的两人在同一组,有两种情况:

(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有种情况;

(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有种情况.

于是,抽到5 和14 两张卡片的两人在同一组的概率为.

6. ∵,∴

,则.

作出该不等式组表示的平面区域(图中的阴影部分).

,则,它表示斜率为的一组平行直线,易知,当它经过点时,取得最小值.

解方程组,得,∴


同步练习册答案