题目列表(包括答案和解析)
设抛物线:(>0)的焦点为,准线为,为上一点,已知以为圆心,为半径的圆交于,两点.
(Ⅰ)若,的面积为,求的值及圆的方程;
(Ⅱ)若,,三点在同一条直线上,直线与平行,且与只有一个公共点,求坐标原点到,距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线于轴的焦点为E,圆F的半径为,
则|FE|=,=,E是BD的中点,
(Ⅰ) ∵,∴=,|BD|=,
设A(,),根据抛物线定义得,|FA|=,
∵的面积为,∴===,解得=2,
∴F(0,1), FA|=, ∴圆F的方程为:;
(Ⅱ) 解析1∵,,三点在同一条直线上, ∴是圆的直径,,
由抛物线定义知,∴,∴的斜率为或-,
∴直线的方程为:,∴原点到直线的距离=,
设直线的方程为:,代入得,,
∵与只有一个公共点, ∴=,∴,
∴直线的方程为:,∴原点到直线的距离=,
∴坐标原点到,距离的比值为3.
解析2由对称性设,则
点关于点对称得:
得:,直线
切点
直线
坐标原点到距离的比值为
设分别是的三个内角所对的边,若
的( )
A.充分不必要条件; B.必要不充分条件; C.充要条件; D.既不充分也不必要条件;
(A)充要条件 (B)充分而不必要条件
(C)必要而不充分条件 (D)既不充分又不必要条件
(A)充要条件
(B)充分而不必要条件
(C)必要而不充分条件
(D)既不充分又不必要条件
设函数,若为函数的一个极值点,则下列图象不可能为的图象是
【答案】D
【解析】设,∴,
又∴为的一个极值点,
∴,即,
∴,
当时,,即对称轴所在直线方程为;
当时,,即对称轴所在直线方程应大于1或小于-1.
1. 由函数知,当时,,且,则它的反函数过点(3,4),故选A.
2.∵,∴,则,即,.,选B.
3. 由平行四边形法则,,
∴,
又,
∴,当P为中点时,取得最小值.选B.
4. 设是椭圆的一个焦点,它是椭圆三个顶点,,构成的三角形的垂心(如图).由有,即,∴,得,解得,选A.
5. 设正方形边长为,,则,.在由正弦定理得,又在由余弦定理得,于是,,选C.
6. 在底面上的射影知,为斜线在平面上的射影,∵,由三垂线定理得,∵,所以直线与直线重合,选A.
7. 过A作抛物线的准线的垂线AA1交准线A1, 过B作椭圆的右准线的垂线交右准线于则有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周长=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB,
由可得两曲线的交点x=,xB∈(,2),
∴3+xB∈(,4),即△ANB周长取值范围是(,4),选B.
8. 先将3,5两个奇数排好,有种排法,再将4,6两个偶数插入3,5中,有种排法,最后将1,2 当成一个整体插入5个空位中,所以这样的六位数的个数为,选B.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com