27. 如图.已知点从出发.以1个单位长度/秒的速度沿轴向正方向运动.以为顶点作菱形.使点在第一象限内.且,以为圆心.为半径作圆.设点运动了秒.求: (1)点的坐标(用含的代数式表示), (2)当点在运动过程中.所有使⊙与菱形的边所在直线相切的的值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)

如图(1),在平面直角坐标系中,△OAB三个顶点坐标分别为O(0,0),A(1,),B(4,0).

(1)求证:AB⊥OA

(2)在第一象限内确定点M,使△MOB与△AOB相似,求符合条件的点M的坐标.

(3)如图(2),已知D(0,-3),作直线BD.

     ①将△AOB沿射线BD平移4个单位长度后,求△AOB与以D为圆心,以1为半径的⊙D的公共点的个数.

②如图(3),现有一点P从D点出发,沿射线DB的方向以1个单位长度/秒的速度作匀速运动,运动时间为秒.当以P为圆心,以为半径的⊙P与△AOB有公共点时,求的取值范围.

 

查看答案和解析>>

(本小题满分10分)

如图(1),在平面直角坐标系中,△OAB三个顶点坐标分别为O(0,0),A(1,),B(4,0).

(1)求证:AB⊥OA

(2)在第一象限内确定点M,使△MOB与△AOB相似,求符合条件的点M的坐标.

(3)如图(2),已知D(0,-3),作直线BD.

     ①将△AOB沿射线BD平移4个单位长度后,求△AOB与以D为圆心,以1为半径的⊙D的公共点的个数.

②如图(3),现有一点P从D点出发,沿射线DB的方向以1个单位长度/秒的速度作匀速运动,运动时间为秒.当以P为圆心,以为半径的⊙P与△AOB有公共点时,求的取值范围.

 

查看答案和解析>>

如图①,△ABC中,AB=BC,∠B=90°,点A,B的坐标分别(0,10),(8,4),点C在 第一象限.动点P从点A出发沿边AB―BC匀速运动,同时动点Q以相同的速度在x轴上运动,图②是当点P在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象.

(1)求点P、Q运动的速度;

(2)求点C的坐标;

(3)求点P在边AB上运动时,△OPQ的面积S(平方单位)关于时间t(秒)的函数关系式,并求当点P运动到边AB上哪个位置时,△OPQ的面积最大?

(4)(本小题为选做题,做对另加3分,但全卷满分不超过150分)已知点P在边AB上运动时,∠OPQ的大小随时间t的增大而增大,点P在边BC上运动时,∠OPQ的大小随时间t的增大而减小,那么当点P在这两边上运动时,使∠OPQ =90°的点P有

              ______个(只填结论,不需解答过程).

 

  图 ①                           图②           

查看答案和解析>>

(本题满分10分)
        、两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图.

【小题1】(1)求关于的表达式;
【小题2】(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,相遇前两车相距的路程为(千米).请直接写出关于的表达式;
【小题3】(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.在下图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象.

查看答案和解析>>

(本题满分10分)
        、两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往城,乙车驶往城,甲车在行驶过程中速度始终不变.甲车距城高速公路入口处的距离(千米)与行驶时间(时)之间的关系如图.

【小题1】(1)求关于的表达式;
【小题2】(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,相遇前两车相距的路程为(千米).请直接写出关于的表达式;
【小题3】(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度.在下图中画出乙车离开城高速公路入口处的距离(千米)与行驶时间(时)之间的函数图象.

查看答案和解析>>


同步练习册答案