例14.在题设条件中的△ABC的三边a.b.c满足等式acosA+bcosB=ccosC.则此三角形必是( )A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.等边三角形 D.其他三角形 查看更多

 

题目列表(包括答案和解析)

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>

在△ABC中,设命题p:
a
sinB
=
b
sinC
=
c
sinA
,命题q:△ABC是等边三角形,那么命题p是命题q的(  )
A、充要条件
B、必要不充分条件
C、充分不必要条件
D、即不充分也不必要条件

查看答案和解析>>

(08年重点中学联考一文)在△ABC中,设命题p,命题q:△ABC为等边三角形,那么命题p是命题q的(    )

  A、充分不必要条件

  B、必要不充分条件

  C、充分必要条件

  D、既不充分也不必要条件

查看答案和解析>>

1. 由函数6ec8aac122bd4f6e知,当时,,且6ec8aac122bd4f6e,则它的反函数过点(3,4),故选A.  

 

2.∵,∴,则,即.,选B.

3. 由平行四边形法则,

,当P为中点时,取得最小值.选B.

4. 设是椭圆的一个焦点,它是椭圆三个顶点,,构成的三角形的垂心(如图).由,即,∴,得,解得,选A.

 

5. 设正方形边长为,则.在由正弦定理得,又在由余弦定理得,于是,选C.

6. 在底面上的射影知,为斜线在平面上的射影,∵,由三垂线定理得,∵,所以直线与直线重合,选A.

 

7. 过A作抛物线的准线的垂线AA1交准线A1,  过B作椭圆的右准线的垂线交右准线于则有:BN=e|BB1|=2-xB,AN=|AA1|=xA+1,周长=|AN|+|AB|+|BN|=xA+1+(xB-xA)+(2-xB)=3+xB

由可得两曲线的交点x=,xB∈(,2),

∴3+xB∈(,4),即△ANB周长取值范围是(,4),选B.

 

8. 先将3,5两个奇数排好,有种排法,再将4,6两个偶数插入3,5中,有种排法,最后将1,2 当成一个整体插入5个空位中,所以这样的六位数的个数为,选B.


同步练习册答案