23. 如图.从⊙O外一点A作⊙O的切线AB.AC.切点分别为B8.C.⊙O的直径BD为6.连结CD.AO. (1)求证:CD//AO, (2)设CD=.AO=y.求y与之间的函数关系式.并写出自变量的取值范围, (3)若AO+CD=11.求AB的长. 查看更多

 

题目列表(包括答案和解析)

(11·贺州)(本题满分10分).

如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于

(1)求抛物线的函数表达式;

(2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,

请直接写出满足条件的所有点P的坐标.

(3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EF

∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求

出S的最大值及此时E点的坐标;若不存在,请说明理由.

 

查看答案和解析>>

(11·贵港)(本题满分12分).
如图,已知直线y=-x+2与抛物线y=a (x+2) 2相交于A、B两点,点A在y轴上,M为抛物线的顶点.

(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

(11·永州)(本题满分6分)在如图所示的正方形网格中,每个小正方形的边长
为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(
5),(,3).
⑴请在如图所示的网格平面内作出平面直角坐标系;
⑵请作出△ABC关于y轴对称的△A′B′C′;
⑶写出点B′的坐标.

查看答案和解析>>

(11·永州)(本题满分6分)在如图所示的正方形网格中,每个小正方形的边长
为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(
5),(,3).
⑴请在如图所示的网格平面内作出平面直角坐标系;
⑵请作出△ABC关于y轴对称的△A′B′C′;
⑶写出点B′的坐标.

查看答案和解析>>

(11·柳州)(本题满分6分).
如图,一次函数y=-4x-4的图象与x轴、y轴分别交于AC

(1)求抛物线的函数表达式;
(2)设抛物线的顶点为D,求四边形ABDC的面积;
(3)作直线MN平行于x轴,分别交线段ACBC于点MN.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案