A..均减小 B..均增大 查看更多

 

题目列表(包括答案和解析)

B.当物体受到拉伸时,以下说法中正确的是(  )

查看答案和解析>>

A. (1)如题12A-1图所示,一演示用的“永动机”转轮由5根轻杆和转轴构成,轻杆的末端装有形状记忆合金制成的叶片,轻推转轮后,进入热水的叶片因伸展面“划水”,推动转轮转动。离开热水后,叶片形状迅速恢复,转轮因此能较长时间转动。下列说法正确的是

A.转轮依靠自身惯性转动,不需要消耗外界能量

B.转轮转动所需能量来自形状记忆合金自身

C.转动的叶片不断搅动热水,水温升高

D.叶片在热水中吸收的热量一定大于在空气中释放的热量

(2)如题12A-2图所示,内壁光滑的气缸水平放置。一定质量的理想气体被密封在气缸内,外界大气压强为P0。现对气缸缓慢加热,气体吸收热量Q后,体积由V1增大为V2。则在此过程中,气体分子平均动能_________(选填“增大”、“不变”或“减小”),气体内能变化了_____________。

(3)某同学在进行“用油膜法估测分子的大小”的实验前,查阅数据手册得知:油酸的摩尔质量M=0.283kg·mol-1,密度ρ=0.895×103kg·m-3.若100滴油酸的体积为1ml,则1滴油酸所能形成的单分子油膜的面积约是多少?(取NA=6.02×1023mol-1.球的体积V与直径D的关系为,结果保留一位有效数字)

B. (1)如图所示,沿平直铁路线有间距相等的三座铁塔A、B和C。假想有一列车沿AC方向以接近光速行驶,当铁塔B发出一个闪光,列车上的观测者测得A、C两铁塔被照亮的顺序是

 

(A)同时被照亮

(B)A先被照亮

(C)C先被照亮

(D)无法判断

(2)一束光从空气射向折射率为的某种介质,若反向光线与折射光线垂直,则入射角为__________。真空中的光速为c ,则光在该介质中的传播速度为________________ .

(3)将一劲度系数为K的轻质弹簧竖直悬挂,下端系上质量为m的物块,将物块向下拉离平衡位置后松开,物块上下做简谐运动,其振动周期恰好等于以物块平衡时弹簧的伸长量为摆长的单摆周期。请由单摆周期公式推算出物块做简谐运动的周期T。

C. (1)下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射规律的是

(2)按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量__________(选填“越大”或“越小”)。已知氢原子的基态能量为E1(E1<0),电子质量为m,基态氢原子中的电子吸收一频率为γ的光子被电离后,电子速度大小为___________(普朗克常量为h ).

(3)有些核反应过程是吸收能量的。例如在中,核反应吸收的能量,在该核反应中,X表示什么粒子?X粒子以动能EK轰击静止的,若EK=Q,则该核反应能否发生?请简要说明理由。

 

查看答案和解析>>

A.(1)如题12A-1图所示,一演示用的“永动机”转轮由5根轻杆和转轴构成,轻杆的末端装有形状记忆合金制成的叶片,轻推转轮后,进入热水的叶片因伸展面“划水”,推动转轮转动。离开热水后,叶片形状迅速恢复,转轮因此能较长时间转动。下列说法正确的是

A.转轮依靠自身惯性转动,不需要消耗外界能量

B.转轮转动所需能量来自形状记忆合金自身

C.转动的叶片不断搅动热水,水温升高

D.叶片在热水中吸收的热量一定大于在空气中释放的热量

(2)如题12A-2图所示,内壁光滑的气缸水平放置。一定质量的理想气体被密封在气缸内,外界大气压强为P0。现对气缸缓慢加热,气体吸收热量Q后,体积由V1增大为V2。则在此过程中,气体分子平均动能_________(选填“增大”、“不变”或“减小”),气体内能变化了_____________。

(3)某同学在进行“用油膜法估测分子的大小”的实验前,查阅数据手册得知:油酸的摩尔质量M=0.283kg·mol-1,密度ρ=0.895×103kg·m-3.若100滴油酸的体积为1ml,则1滴油酸所能形成的单分子油膜的面积约是多少?(取NA=6.02×1023mol-1.球的体积V与直径D的关系为,结果保留一位有效数字)

B.(1)如图所示,沿平直铁路线有间距相等的三座铁塔A、B和C。假想有一列车沿AC方向以接近光速行驶,当铁塔B发出一个闪光,列车上的观测者测得A、C两铁塔被照亮的顺序是

 

(A)同时被照亮

(B)A先被照亮

(C)C先被照亮

(D)无法判断

(2)一束光从空气射向折射率为的某种介质,若反向光线与折射光线垂直,则入射角为__________。真空中的光速为c ,则光在该介质中的传播速度为________________ .

(3)将一劲度系数为K的轻质弹簧竖直悬挂,下端系上质量为m的物块,将物块向下拉离平衡位置后松开,物块上下做简谐运动,其振动周期恰好等于以物块平衡时弹簧的伸长量为摆长的单摆周期。请由单摆周期公式推算出物块做简谐运动的周期T。

C.(1)下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射规律的是

(2)按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量__________(选填“越大”或“越小”)。已知氢原子的基态能量为E1(E1<0),电子质量为m,基态氢原子中的电子吸收一频率为γ的光子被电离后,电子速度大小为___________(普朗克常量为h ).

(3)有些核反应过程是吸收能量的。例如在中,核反应吸收的能量,在该核反应中,X表示什么粒子?X粒子以动能EK轰击静止的,若EK=Q,则该核反应能否发生?请简要说明理由。

 

查看答案和解析>>

A. (1)如题12A-1图所示,一演示用的“永动机”转轮由5根轻杆和转轴构成,轻杆的末端装有形状记忆合金制成的叶片,轻推转轮后,进入热水的叶片因伸展面“划水”,推动转轮转动。离开热水后,叶片形状迅速恢复,转轮因此能较长时间转动。下列说法正确的是

A.转轮依靠自身惯性转动,不需要消耗外界能量
B.转轮转动所需能量来自形状记忆合金自身
C.转动的叶片不断搅动热水,水温升高
D.叶片在热水中吸收的热量一定大于在空气中释放的热量
(2)如题12A-2图所示,内壁光滑的气缸水平放置。一定质量的理想气体被密封在气缸内,外界大气压强为P0。现对气缸缓慢加热,气体吸收热量Q后,体积由V1增大为V2。则在此过程中,气体分子平均动能_________(选填“增大”、“不变”或“减小”),气体内能变化了_____________。
(3)某同学在进行“用油膜法估测分子的大小”的实验前,查阅数据手册得知:油酸的摩尔质量M=0.283kg·mol-1,密度ρ=0.895×103kg·m-3.若100滴油酸的体积为1ml,则1滴油酸所能形成的单分子油膜的面积约是多少?(取NA=6.02×1023mol-1.球的体积V与直径D的关系为,结果保留一位有效数字)
B. (1)如图所示,沿平直铁路线有间距相等的三座铁塔A、B和C。假想有一列车沿AC方向以接近光速行驶,当铁塔B发出一个闪光,列车上的观测者测得A、C两铁塔被照亮的顺序是
 
(A)同时被照亮
(B)A先被照亮
(C)C先被照亮
(D)无法判断
(2)一束光从空气射向折射率为的某种介质,若反向光线与折射光线垂直,则入射角为__________。真空中的光速为c ,则光在该介质中的传播速度为________________ .
(3)将一劲度系数为K的轻质弹簧竖直悬挂,下端系上质量为m的物块,将物块向下拉离平衡位置后松开,物块上下做简谐运动,其振动周期恰好等于以物块平衡时弹簧的伸长量为摆长的单摆周期。请由单摆周期公式推算出物块做简谐运动的周期T。
C. (1)下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射规律的是

(2)按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量__________(选填“越大”或“越小”)。已知氢原子的基态能量为E1(E1<0),电子质量为m,基态氢原子中的电子吸收一频率为γ的光子被电离后,电子速度大小为___________(普朗克常量为h ).
(3)有些核反应过程是吸收能量的。例如在中,核反应吸收的能量,在该核反应中,X表示什么粒子?X粒子以动能EK轰击静止的,若EK=Q,则该核反应能否发生?请简要说明理由。

查看答案和解析>>

Ⅰ.在《验证机械能守恒定律》实验中,实验装置如图1所示.

(1)根据打出的纸带(图2),选取纸带上打出的连续五个点A、B、C、D、E,测出A点距起点O的距离为xo,点A、C间的距离为x1,点C、E间的距离为x2,交流电的周期为T,当地重力加速度为g,则根据这些条件计算打C点时的速度表达式为:vc=
x
 
1
+x
 
2
4T
x
 
1
+x
 
2
4T
(用x1、x2和T表示)
(2)根据实验原理,只要验证表达式
g(
x
 
0
+x
 
1
)=
(x
 
1
+x
 
2
)
2
 
3
2T
2
 
g(
x
 
0
+x
 
1
)=
(x
 
1
+x
 
2
)
2
 
3
2T
2
 
(用g、x0、x1、x2和T表示)成立,就验证了机械能守恒定律.
(3)完成实验中发现,重锤减少的重力势能总是大于重锤增加的动能,其原因主要是因为在重锤下落过程中存在着阻力的作用,我们可以通过该实验装置测定该阻力的大小则还需要测量的物理量是
重物质量m
重物质量m
(写出名称)
Ⅱ.某研究性学习小组为了制作一种传感器,需要选用一电器元件.图1为该电器元件的伏安特性曲线,有同学对其提出质疑,先需进一步验证该伏安特性曲线,实验室备有下列器材:


器材(代号) 规格
电流表(A1
电流表(A2
电压表(V1
电压表(V2
滑动变阻器(R1
滑动变阻器(R2
直流电源(E)
开关(S)
导线若干
量程0~50mA,内阻约为50Ω
量程0~200mA,内阻约为10Ω
量程0~3V,内阻约为10kΩ
量程0~15V,内阻约为25kΩ
阻值范围0~15Ω,允许最大电流1A
阻值范围0~1kΩ,允许最大电流100mA
输出电压6V,内阻不计
①为提高实验结果的准确程度,电流表应选用
A
 
2
A
 
2

电压表应选用
V
 
1
V
 
1
;滑动变阻器应选用
R
 
1
R
 
1
.(以上均填器材代号)
②为达到上述目的,请在虚线框内(图2)画出正确的实验电路原理图3.
③实物连线(部分已连接好,完成余下部分)

查看答案和解析>>

高考真题

1.【解析】由合力与分的关系可知,合力最大应是它们同向,最小应是它们反向

【答案】B

2.【解析】重力是地球的吸引而产生的,地球上一切物体都受到重力,与物体的运动状态无关,重力的方向是竖直向下

【答案】D

 

3.【解析】如图所示,力F产生了两个作用效果,一个是使B压紧竖直墙面的力F1,一个是压紧A的力F2,用整体法进行分析,可知F1和F3的大小相等,当力F缓慢增大时,合力的方向和两个分力的方向都没有发生变化,所以当合力增大时两个分力同时增大,C正确                         

【答案】C

                                                   

4.【解析】将力F进行分解,再由整体法在竖直方向运用平衡

条件可列式:Fsinθ+N=mg+Mg,则N= mg+Mg-Fsinθ

【答案】D 

                                                  

5.【解析】竖直挂时,当质量为2m放到斜面上时,,因两次时长度一样,所以也一样。解这两个方程可得,物体受到的摩擦力为零,A正确。

【答案】A

 

6.【解析】设刚性细杆中弹力为F,光滑的半球面对小球a的弹力为Fa,对小球b的弹力为Fb,分别隔离小球a和b对其分析受力并应用平行四边形定则画出受力分析。由细杆长度是球面半径的倍可得出三角形Oab是直角三角形,∠Oab=∠Oba=45°。对△bFB应用正弦定理得两式联立消去F得sin(45°+θ)=  sin(45°―θ)

显然细杆与水平面的夹角θ=15°,正确选项是D。

【答案】D

 

7.【解析】考查牛顿运动定律。设减少的质量为△m,匀速下降时:Mg=F+kv,匀速上升时:Mg-△mg+kv = F,解得△mg = 2(M-),A正确。

【答案】A

 

8.【解析】⑴空载时合力为零:

 已知:fB=2fA 求得:fA=200 kN fB=400 kN

         设机架重心在中心线右侧,离中心线的距离为x,以A为转轴

              求得:x=1.5 m

       ⑵以A为转轴,力矩平衡

     

              求得:FB=450 kN

【答案】(1)x=1.5 m;(2)B=450 kN                      

9.【解析】读数时应估读一位,所以其中l5 l6两个数值在记录时有误

【答案】①l5 ;l6;②6.85(6.84-6.86) ;14.05(14.04-14.06);

③l7-l3 ;7.20(7.18-7.22) ;④

名校试题

1.【解析】 猴子受重力和两个拉力人作用,所以选项A正确;两拉力的合力与重力平衡,B错;地球对猴子的引力与猴子对地球的引力是一对作用力和反作用力,C正确;猴子静止合力总为零,选项D错

2.【解析】由力的三角形定则,在重力不变的情况下,和重力构成一个封闭的三角形,从而得到均减小

【答案】A

3.【解析】由受力分析和摩擦力的产生条件可得选项C正确            

【答案】C

4.【解析】由图可知弹簧先压缩后伸长,当弹簧的长度为6cm时,弹力为零,所以弹簧的原长为6cm;当弹簧伸长2cm时,弹力为2N,故弹簧的劲度系数为100N/m

【答案】BC

5.【解析】 隔离物体B可知,绳的张力不变,所以选项A错;隔离物体A得选项D正确

【答案】D

6.【解析】 以整体为研究对象,设斜面的倾角为,则F3  ,是个定值不变;隔离球乙,求得F1缓慢减小.

【答案】D

7.【解析】(1)输电线线冰层的体积V= πR2L  

由对称关系可知,塔尖所受压力的增加值等于一根导线上冰层的重力,即

ΔN = ρVg= πρR2Lg  

(2)输电线与冰层的总质量M' = m0L + πρR2Lg,输电线受力如图甲所示。

由共点力的平衡条件,得2F1cosθ = m0Lg + πρR2Lg  

输电线在最高点所受的拉力  

半根输电线的受力如图乙所示。

由共点力的平衡条件,得F= F1sinθ  

【答案】(1)πρR2Lg;(2)

8.【解析】⑴根据实验数据在坐标纸上描出的点,基本上在同一条直线上。可以判定F和L间是一次函数关系。画一条直线,使尽可能多的点落在这条直线上,不在直线上的点均匀地分布在直线两侧。(5分)

可得k=25N/m。

【答案】k=25N/m。

9【解析】不正确。 平行于斜面的皮带对圆柱体也有力的作用。

       (1)式应改为:Fcosβ+F=mgsinα  ② 

       由②得30N=10N  ③  

       将③代入②得FN=mgcosα-Fsinβ=30×0.8-10×0.6N=18N  ④  

【答案】18N

10.【解析】原来匀速时F1=  (1)当F2为推力且与F1夹角为时,有因为F2=F1,解得(2)当F2为拉力且与水平方向成角时,有

综上所述,当力F2与F1在同一竖直平面内,力F2的方向与力F1的夹角为arccotu

【答案】

11.【解析】对B球,受力分析如图所示。

Tcos300=NAsin300 ………….①

            ∴ T=2mg

A球,受力分析如图D-1所示。在水平方向

Tcos300=NAsin300 …………………..② 

在竖直方向

NAcos300=mAg+Tsin300 …………………③ 

【答案】由以上方程解得:mA=2m

  考点预测题

1.【解析】滑动摩擦力F的大小跟物体的相对运动速度的大小没有关系.本题选项为AB

【答案】AB.

2.【解析】本题的立意在考查滑动摩擦力方向的判断,物体A在水平方向有相对圆柱体向左的速度υ′,υ′ = ωr = 1.8m/s;在竖直方向有相对圆柱体向下的速度υ0 = 2.4m/s,所以综合起来A相对于圆柱体的合速度为v,如图18右所示,且υ= = 3m/s?

合速度与竖直方向的夹角为θ,则cosθ = =

A做匀速运动,其受力如图18左所示                  图18

竖直方向平衡,有Ff cosθ = mg,得Ff = = 12.5N?另Ff =μFN,FN =F,故F =  = 50N               

【答案】50N

3.【解析】由题给条件知未施加力F时,弹簧的弹力大小为   

物块A与地面间的滑动摩擦力大小为

物块B与地面间的滑动摩擦力大小为

令施加力F后装置仍处于静止状态,B受地面的摩擦力为fBA受地面的摩擦力为fA,由平衡条件有:

代入数据解得:

,表明物块B的确仍处于静止状态。

综合以上分析可知,所给选项中只有C项正确。

【答案】C

4.【解析】此题材把四种不同的物理情景的弹簧放在一起,让学生判别弹簧的伸长量的大小,实际上就是判断四种情景下弹簧所受弹力的大小。由于弹簧的质量不计,所以不论弹簧做何种运动,弹簧各处的弹力大小都相等。因此这情况下弹簧的弹力是相等,即四个弹簧的伸长量是相等。只有D选项正确。

【答案】D

5.【解析】在水对大坝压力一定的情况下,A图所示,为晾衣绳原理中最大情况,即大坝受力最大。固不是最佳方案,而B图与C、D图的区别在于:B图大坝所受压力传递给坝墩,而C、D图所受压力将直接作用在在坝上,受力分析,如图22所示,所以该题选B。                               图22

【答案】B

 

                                                                 

6.【解析】(1)设c′点受两边绳的张力为T1和T2的夹角为θ,如图所示。依对称性有:T1=T2=T    由力的合成有 :   而=90-

所以 F=2Tsinθ    

    根据几何关系有 sinθ= 

    联立上述二式解得  T=  ,因d<<L,故     

   (2)将d=10mm,F=400N,L=250mm代入,解得   T=2.5×103N ,  即绳中的张力为2.5×103N

【答案】2.5×103N

7.【解析】因为物体处于静止状态,根据受力平衡得正确答案为C。            

【答案】C

8.【解析】设绳子的拉力为F,将P。Q看作一个整体进行受力分析,整体受两绳相等的拉力和地面的摩擦力做匀速运动,故有 F=2 F+2μmg隔离物体Q由平衡条件有:F=μmg,代入F得:F=4μmg。所以选项A正确。

【答案】A

9.【解析】物体P静止不动,轻绳上拉力和P的重力平衡,故轻绳上拉力一定不变,D项正确。若开始时,Q有下滑趋势,静摩擦力沿斜面向上,用水平恒力向左推Q,则静摩擦力减小;若开始时,Q有上滑趋势,静摩擦力沿斜面向下,用水平恒力向左推Q,则静摩擦力增大。因此,Q受到的摩擦力大小不确定。所以选项D正确

【答案】D

10.【解析】本题的难点是判断硬杆对C点弹力的方向,不少学生认为该力的方向应沿C点杆的切线方向,而不是沿BC方向。若是以杆为研究对象,杆只受到两个力(因为杆的质量忽略不计);即两个端点对杆的作用力,杆处于平衡,这两个力一定是一对平衡力,若是C点的力不经过B点,那么这两个力不在一条直线上,肯定不是一对平衡力,杆就不能平衡。所以对杆的作用力方向的分析,千万不能将其当做绳对待。对于轻杆平衡时,它只有两上端点所受的力,这两个力一定是一对平衡力。以 C点为研究对象,作出C点受力图如图所示。物体对C点向下的拉力大小等于重力mg,绳AC的拉力T沿绳指向A,硬杆对C点的弹力N,由于硬杆的质量不计,故杆的弹力N方向沿BC的连线方向,同时有几何关系。图中的T和mg的合力与N是一对平衡力,且合力方向与T和mg的夹角均相同,由三角形知识可得T=mg 。

【答案】T=mg

11. 【解析】先分析B球受力情况,因OB处于竖直状态,拉力竖直向上,由平衡条件可知,B球只受重力和OB的拉力作用,线BA中无作用力。再分析A球受力,A球受重力、OA拉力和外力F,由平衡条件知该力可能是图F2、F3,选项B.C正确

【答案】B.C

  12.【解析】将滑轮挂到细绳上,对滑轮进行受力分析如图所示,滑轮受到重力和AK和BK的拉力F,且两拉力相等,由于对称,因此重力作用线必过AK和BK的角平分线。延长AK交墙壁于C点,因KB =KC,所以由已知条件  AK+ KC = AC=2AO,所以图中的角度α =30°,此即两拉力与重力作用线的夹角。两个拉力的合力R与重力等值反向,所以: 

    2 F cos30° = R =G, 所以F = mg/2cos30° = mg/3 。                    

     【答案】  mg/3                                                                   

13.【解析】因光滑挂钩与轻滑轮模型相同,轻质挂钩的受力如图所示,

由平衡条件可知,T1、T2合力与G等大反向,且T1=T2

所以       T1sinα +T2sinα =T3= G                                                

即T1=T2=,而 AO?cosα+BO.cosα= CD,                          

所以       cosα =0.8                                                                                                                  

sin=0.6,T1=T2=10N                                                                     

【答案】10N

14.【解析】分析物体受力情况,选斜面方向为x 轴,垂直斜面方向为y 轴,把不在轴上的重力G

水平分力F分解到坐标轴上,由于物体处于平衡状态,则有

       …

               

解得: 

【答案】

15.【解析】如图所示,利用直尺、皮卷尺、漏斗、细沙等实验器材,用装满细沙漏斗朝水平地面堆积,从漏斗中落下的细沙总是在地面上形成一个小圆锥体,继续下落时,细沙由圆锥面表面下滑,当圆锥体的母线与地面的夹角达到一定角度时,细沙不再下滑,用直尺测量小圆锥体高度h,皮卷尺测量小圆锥体底面周长C,则由。              

【答案】

    16.【解析】(1)当砂轮静止时,把AB杆和工件看成一个物体,它受到的外力对A轴的力矩有:重力的力矩()砂轮对工件的支持力的力矩,的力矩

由力矩的平衡,得                              

解得                        代入数据得                                                

(2)当砂轮转动时,除重力、支持力和的力矩外,还有砂轮作用于工件的摩擦力的力矩。由力矩的平平衡;得              

解得             代入数据得  

    【答案】(1)   (2)                                                      

17.【解析】(1)空载时,杆杆秤恰好平衡,秤杆、配重物及挂钩所受重力相对提纽的合力矩M正好等于两套筒相对于提纽的力矩. 提纽到挂钩的距离为d=2cm,套筒的长L=16cm. 此时,两套筒重心到提纽的距离为(L/2-d). 两套筒质量m=0.1kg.

  则M=2mg(L/2-d)=0.12Nm.

  (2)当在秤钩上挂一物体时,挂钩处增加一个重力m1g,它产生一个逆时针方向的力矩m1gd应当与由于两套筒向右移动增加的力矩相平衡,则

  m1gd=mgX1+mg(X1+X2),其中X1=5cm、X2=8cm为两套筒右移距离.

代入数据解得待测物体质量m1=0.9 kg.

    (3)注意该杆秤的刻度特点:内层刻度是依据内层左侧与秤的最左端的距离来刻的、外层刻度是依据外层左侧与内层左侧的距离来刻的. 外层套筒丢失前,挂物m2g=1kg,内层刻度为1kg,外层刻度为零,此时内、外层共同向右移动X杆秤力矩平衡. 则

  m2gd=2mgX,得X=m2d/(2m)=0.1m.

由于外层套筒丢失,内层读数为1kg时,内筒左端离提纽的距离为X-d,内筒重心离提纽的距离为(X-d+L/2),此时内筒所产生的力矩与待测物产生力矩m3gd及力矩M相平衡,即m3gd+M=mg(X-d+L/2),代入数据解得待测物质量m3=0.2kg.

【答案】(1)0.12Nm    (2)0.9 kg.        (3)m3=0.2kg.

 


同步练习册答案