如下图.平面直角坐标系中.⊙A的圆心在X轴上.半径为1.直线L为y=2x-2.若⊙A沿X轴向右运动.当⊙A与L有公共点时.点A移动的最大距离是( ) A. B.3 C. D. 查看更多

 

题目列表(包括答案和解析)

如图,平面直角坐标系中,O为坐标原点,直线AB:y=x+12与直线CD:y=kx+10k交于点E,且E点的纵坐标为-2,
(1)求直线CD的解析式;
(2)动点P从B出发以每秒
2
个单位的速度沿射线BA运动,过点P作PQ∥x轴交直线CD于Q,若点P的运动时间为t秒,PQ的长度为y,求y与t的函数关系式(t>0);
(3)在(2)的条件下,求t为何值时,△PQO的外接圆与坐标轴相切.

查看答案和解析>>

如图,平面直角坐标系中,O为坐标原点,直线AB:y=x+12与直线CD:y=kx+10k交于点E,且E点的纵坐标为-2,
(1)求直线CD的解析式;
(2)动点P从B出发以每秒数学公式个单位的速度沿射线BA运动,过点P作PQ∥x轴交直线CD于Q,若点P的运动时间为t秒,PQ的长度为y,求y与t的函数关系式(t>0);
(3)在(2)的条件下,求t为何值时,△PQO的外接圆与坐标轴相切.

查看答案和解析>>

如图,平面直角坐标系中,O为坐标原点,直线AB:y=x+12与直线CD:y=kx+10k交于点E,且E点的纵坐标为-2,
(1)求直线CD的解析式;
(2)动点P从B出发以每秒个单位的速度沿射线BA运动,过点P作PQ∥x轴交直线CD于Q,若点P的运动时间为t秒,PQ的长度为y,求y与t的函数关系式(t>0);
(3)在(2)的条件下,求t为何值时,△PQO的外接圆与坐标轴相切.

查看答案和解析>>

在平面直角坐标系中,对于任意两点的“非常距离”,给出如下定义:
,则点与点的非常距离为
,则点与点的非常距离为
例如:点(1,2),点(3,5),因为,所以点与点的“非常距离”为,也就是图1中线段与线段长度的较大值(点Q为垂直于y轴的直线与垂直于x轴的直线的交点).
(1)已知点A(,0),B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值.
(2)已知C是直线上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应点E和点C的坐标.

查看答案和解析>>

在平面直角坐标系中,对于任意两点的“非常距离”,给出如下定义:

,则点与点的非常距离为

,则点与点的非常距离为

例如:点(1,2),点(3,5),因为,所以点与点的“非常距离”为,也就是图1中线段与线段长度的较大值(点Q为垂直于y轴的直线与垂直于x轴的直线的交点).

(1)已知点A(,0),B为y轴上的一个动点,

①若点A与点B的“非常距离”为2,写出满足条件的点B的坐标;

②直接写出点A与点B的“非常距离”的最小值.

(2)已知C是直线上的一个动点,

①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;

②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应点E和点C的坐标.

 

查看答案和解析>>


同步练习册答案