题目列表(包括答案和解析)
如图,直线AB过点A(3m,0),B(0,n),(m>0,n>0),反比例函数y=的图像与直线AB交于C、D两点,P为双曲线y=上任意一点,过P点作PQ⊥x轴于Q,PR⊥y轴于R.(1)用含m、n的代数式表示△AOB的面积S;(2)若m+n=10,n为何值时S最大?并求出这个最大值;(3)若BD=DC=CA,求出C、D两点坐标;(4)在(3)的条件下,过O、D、C三点作抛物线,当该抛物线的对称轴为x=时,矩形PROQ的面积是多少?
如图,在平面直角坐标系中,直线y=-2x+2与x轴、y轴分别相交于点A,B,四边形ABCD是正方形,反比例函数y=在第一象限的图像经过点D.
(1)求D点的坐标,以及反比例函数的解析式;
(2)若K是双曲线上第一象限内的任意点,连接AK、BK,设四边形AOBK的面积为S;试推断当S达到最大值或最小值时,相应的K点横坐标;并直接写出S的取值范围.
(3)试探究:将正方形ABCD沿左右(或上下)一次平移若干个单位后,点C的对应点恰好落在双曲线上的方法.
反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).
这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:
例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.
解答:=|k|
=|k|
故=
例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有( )
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵=|k|=,
=|k|=
=|k|=
S1=S2=S3,故选A.
例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.
解答:∵S△AOM=|k|
又S△AOM=3,
∴|k|=3,|k|=6
∴k=±6
又∵曲线在第三象限
∴k>0∴k=6
∴所以反比例函数的解析式为y=.
根据是述意义,请你解答下题:
如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得
A.S1>S2
B.S1=S2
C.S1<S2
D.大小关系不能确定
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com