题目列表(包括答案和解析)
第二部分 牛顿运动定律
第一讲 牛顿三定律
一、牛顿第一定律
1、定律。惯性的量度
2、观念意义,突破“初态困惑”
二、牛顿第二定律
1、定律
2、理解要点
a、矢量性
b、独立作用性:ΣF → a ,ΣFx → ax …
c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。
3、适用条件
a、宏观、低速
b、惯性系
对于非惯性系的定律修正——引入惯性力、参与受力分析
三、牛顿第三定律
1、定律
2、理解要点
a、同性质(但不同物体)
b、等时效(同增同减)
c、无条件(与运动状态、空间选择无关)
第二讲 牛顿定律的应用
一、牛顿第一、第二定律的应用
单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。
应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。
1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中( )
A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动
B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力
C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点
D、工件在皮带上有可能不存在与皮带相对静止的状态
解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。
较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t → 0 ,a → ∞ ,则ΣFx → ∞ ,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)
此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出
只有当L > 时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,试求工件到达皮带右端的时间t(过程略,答案为5.5s)
进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0 ,其它条件不变,再求t(学生分以下三组进行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:
① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?
② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?
解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。
第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。
答案:0 ;g 。
二、牛顿第二定律的应用
应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。
在难度方面,“瞬时性”问题相对较大。
1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。
解说:受力分析 → 根据“矢量性”定合力方向 → 牛顿第二定律应用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)
进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)
进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。
解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。
分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则
θ=(90°+ α)- β= 90°-(β-α) (1)
对灰色三角形用正弦定理,有
= (2)
解(1)(2)两式得:ΣF =
最后运用牛顿第二定律即可求小球加速度(即小车加速度)
答: 。
2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。
解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。
正交坐标的选择,视解题方便程度而定。
解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上两式成为
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
这是一个关于T和N的方程组,解(1)(2)两式得:T = mgsinθ + ma cosθ
解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。
根据独立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
显然,独立解T值是成功的。结果与解法一相同。
答案:mgsinθ + ma cosθ
思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N = mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m 。)
学生活动:用正交分解法解本节第2题“进阶练习2”
进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。
解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。
答:208N 。
3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。
解说:第一步,阐明绳子弹力和弹簧弹力的区别。
(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?
结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。
第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。
知识点,牛顿第二定律的瞬时性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?
解:略。
答:2g ;0 。
三、牛顿第二、第三定律的应用
要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。
在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。
对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。
补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系统外力的矢量和,等式右边也是矢量相加。
1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?
解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。
答案:N = x 。
思考:如果水平面粗糙,结论又如何?
解:分两种情况,(1)能拉动;(2)不能拉动。
第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。
第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。
答:若棒仍能被拉动,结论不变。
若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N = 〔x -〈L-l〉〕。
应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2 ,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2 ,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?
解:略。
答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。
2、如图15所示,三个物体质量分别为m1 、m2和m3 ,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?
解说:
此题对象虽然有三个,但难度不大。隔离m2 ,竖直方向有一个平衡方程;隔离m1 ,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。
答案:F = 。
思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。
解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:
= m2a
隔离m1 ,仍有:T = m1a
解以上两式,可得:a = g
最后用整体法解F即可。
答:当m1 ≤ m2时,没有适应题意的F′;当m1 > m2时,适应题意的F′= 。
3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?
解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。
法二,“新整体法”。
据Σ= m1 + m2 + m3 + … + mn ,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的连接体
当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。
解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、
1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。
解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。
(学生活动)定型判断斜面的运动情况、滑块的运动情况。
位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。
(学生活动)这两个加速度矢量有什么关系?
沿斜面方向、垂直斜面方向建x 、y坐标,可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔离滑块和斜面,受力图如图20所示。
对滑块,列y方向隔离方程,有:
mgcosθ- N = ma1y ③
对斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(学生活动)思考:如何求a1的值?
解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向的隔离方程即可,显然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后据a1 = 求a1 。
答:a1 = 。
2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。
解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。
(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)
定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:
S1x + b = S cosθ ①
设全程时间为t ,则有:
S = at2 ②
S1x = a1xt2 ③
而隔离滑套,受力图如图23所示,显然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引进动力学在非惯性系中的修正式 Σ+ * = m (注:*为惯性力),此题极简单。过程如下——
以棒为参照,隔离滑套,分析受力,如图24所示。
注意,滑套相对棒的加速度a相是沿棒向上的,故动力学方程为:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒为参照,滑套的相对位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二讲 配套例题选讲
教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。
例题选讲针对“教材”第三章的部分例题和习题。
高考真题
1.【解析】因温度保持不变,分子的平均动能不变,所以选项A错;活塞上方液体逐渐流出,理想气体压强减小,体积增大,所以气体分子对活塞撞击的次数减小,单位时间气体分子对活塞的冲量保持减小,由热力学第一定律,气体对外界做功等于气体从外界吸收的热量,选项D对.
【答案】D
2.【解析】由PV/T为恒量,由图像与坐标轴围成的面积表达PV乘积,从实线与虚线等温线比较可得出,该面积先减小后增大,说明温度T先减小后增大,内能先将小后增大。所以选项B正确
【答案】B
3.【解析】A错误之处在于气体分子是无规则的运动的,故失去容器后就会散开;D选项中没考虑气体的体积对压强的影响;F选项对气温升高,分子平均动能增大、平均速率增大,但不是每个分子速率增大,对单个分子的研究是毫无意义的。
【答案】BCE
4.【解析】初始时,两室气体的温度相同,故分子平均动能相等,A错;因为气缸是绝热的,所以气缸内气体的总的内能守恒,由于隔板导热,重新平衡后两种气体温度仍相同,即气体内能仍相等,所以每种气体内能均不变,B错;氢气通过隔板对氧气做功,而内能不变,由热力学第一定律可知氢气一定吸收了来自氧气的热量,C正确;达到平衡的过程中,氢气对氧气做功,氧气内能增加;热量从氧气传递到氢气内能又减少,D正确。
【答案】CD
5.【解析】大气压是由大气重量产生的。大气压强p==,带入数据可得地球表面大气质量m=5.2×
【答案】B
6.【解析】①由玻意耳定律得:,
式中V是抽成真空后活塞下方气体体积
由盖?吕萨克定律得:
解得:T/=1.2T
②由查理定律得:
解得:p2=0.75p0
7.【解析】封闭气体的压强等于大气压与水银柱产生压强之差,故左管内外水银面高度差也为h,A对;弯管上下移动,封闭气体温度和压强不变,体积不变,B错C对;环境温度升高,封闭气体体积增大,则右管内的水银柱沿管壁上升,D对。
【答案】ACD
8.【解析】(1)由热力学第一定律△U = W+Q,代入数据得:1.5×105 = 2.0×105+Q,解得Q = -5×104;
(2)由PV/T=恒量,压强不变时,V随温度T的变化是一次函数关系,故选择C图;
(3)1g水的分子数 N = NA ,1cm2的分子数 n =N≈7×103 (6×103~7×103都算对)。
【答案】(1)答案:放出;5×104;(2)C;增加;(3)7×103(6×103~7×103都算对)
9.【解析】(1)物体间存在分子力,所以要想想使玻璃板离开水面,必须用比玻璃板重力,因为分子间存间相互用用力;扩散运动,是由于分子永不停息地作无规律运动
【答案】小于,分子的无规律运动.
10.【解析】本题考查玻马定律,对气体作为研究对象,分第一次加小盒沙子和第二次加沙子两次列玻马定律方程求解。
设大气和活塞对气体的总压强为p0,加一小盒沙子对气体产生的压强为p,图8
由玻马定律得
①
由①式得
②
再加一小盒沙子后,气体的压强变为p0+2p。设第二次加沙子后,活塞的高度为h′
′ ③
联立②③式解得
h′= ④
【答案】h
11.【解析】由于轮胎容积不变,轮胎内气体做等容变化。设在T0=293K充气后的最小胎压为Pmin,最大胎压为Pmax。依题意,当T1=233K时胎压为P1=1.6atm。根据查理定律
,即解得:Pmin=2.01atm
当T2=363K是胎压为P2=3.5atm。根据查理定律
,即解得:Pmax=2.83atm
【答案】:Pmax=2.83atm Pmax=2.83atm
12.【解析】(1)设气体初态压强为p1,体积为V1;末态压强为p2,体积为V2,由玻意耳定律
p1V1= p1V1 代入数据得p2=2.5 atm
微观察解释:温度不变,分子平均动能不变,单位体积内分子数增加,所以压强增加。
(2)吸热。气体对外做功而内能不变,根据热力学第一定律可知气体吸热。
【答案】分子平均动能不变,单位体积内分子数增加,所以压强增加p2=2.5 atm
名校试题
1.【解析】因温度不变,所以内能不变,活塞缓慢向右移动,体积变大,压强减小,对外界做功,由热力学第一定律必吸收热量,所以选项BD对
【答案】BD
2.【解析】由于不计气体分子间的作用力,则不考虑分子势能,气体分子的内能即为分子的总动能。由状态A变为状态B时,气体的温度升高,则内能增加,而体积增大,气体对外做功,据热力学第一定律可知,物体需要从外接吸收热量。单位时间内与器壁单位面积碰撞的分子数与两个因素有关:分子数密度和分子的平均速率。气体的体积增大,分子数密度跟体积有关,体积变大,分子数密度减小;温度升高,分子的平均速率增大,故而该选项不能确定。气体温度升高,分子的平均动能增大,但是并非每个分子的动能都增加,选项C错误。由于气体的体积变大,密度减小,气体对光的折射率将变小,光在其中的传播速度会增大,选项D正确。
【答案】AD
3.【解析】气体分子距离远大于分子大小,所以气体的体积远大于所有气体分子体积之和,A项错;温度是物体分子平均动能的标志,是表示分子热运动剧烈程度的物理量,B项正确;气体压强的微观解释是大量气体分子频繁撞击产生的,C项正确;气体膨胀,说明气体对外做功,但不能确定吸、放热情况,故不能确定内能变化情况,D项错。
【答案】BC
4.【解析】⑴设密闭气体温度升高
△U=Q1 ①
△U=Q2+W ②
对活塞用动能定理得:
W内+W大气-Gh=0 ③
W大气=-P0Sh ④
W=-W内 ⑤
解②③④⑤得:Q2=△U+(P0S+G)h ⑥
∴Q1 <Q2 ⑦
由此可见,质量相等的同种气体,在定容和定压两种不同情况下,尽管温度变化相同,但吸收的热量不同,所以同种气体在定容下的热比容与在定压下的热比容不同
⑵解①⑥两式得:
h=
【答案】(1)质量相等的同种气体,在定容和定压两种不同情况下,尽管温度变化相同,但吸收的热量不同,所以同种气体在定容下的热比容与在定压下的热比容不同
(2)
5.【解析】1.BCD
2.(1)ACB过程内能增加 ACB过程中 W1=-280J,Q1=410J
由热力学第一定律 UB-UA=W1+Q1=130J
气体内能的变化量为130J
(2)BDA过程中气体放热
因为一定质量理想气体的内能只是温度的函数,BDA过程中气体内能变化量
UA-UB=-130J 又因气体对外界做功200J
由热力学第一定律 UA-UB=W2+Q2
Q2=-330J 放出热量330J
【答案】(1)BCD (2)330J
6.【解析】(1)ADE
(2)①对于理想气体:
A→B ∴
B→C ∴
②A→C 由温度相等得:
⑶A→C的过程中是吸热.吸收的热量
【答案】(1)ADE (2) (3)吸收的热量
7.【解析】(1)不违反,内能不可能全部转化为电能,而不产生其他影响(2分).产生电能是因为被火焰加热的铜铁丝内能的转化(1分),其内能一部分转化为电能(1分),一部分传递给冰水(1分)
(2)①理想气体温度不变,内能不变,体积减小,外界对气体做功,根据热力学第一定律知,气体放热. (2分)
②根据玻意耳定律: (2分)
活塞移动后气体的体积为:=25 cm3
【答案】(1)不违反 (2)25 cm3
|