23.如下图.在□ABCD中.AB=4.点D的坐标是(0.8).以点C为顶点的抛物线经过轴上的点A.B. (1)求点A.B.C的坐标. (2)若抛物线向上平移后恰好经过点D.求平移后抛物线的解析式. 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系中的正方形ABCD的边长为acm(a>2),B与坐标原点重合,边AB在y轴正半轴,动点P从点B出发,以2cm/s的速度沿B→C→D方向,向点D运动;动点Q从点A出发,以1cm/s的速度沿A→B方向,向点B运动,设P,Q两点同时出发,运动时间为ts.
(1)若t=1时,△BPQ的面积为3cm2,则a的值为多少?
(2)在(1)的条件下,以点P为圆心,作⊙P,使得⊙P与对角线BD相切如图(b)所示,问:当点P在CD上动动时,是否存在这样的t,使得⊙P恰好经过正方形ABCD的某一边的中点?若存在,请写出符合条件的t的值并直接写出直线PQ解析式(其中一种情形需有计算过程,其余的只要直接写出答案);若不存在,请说明理由.
(3)在(1)的条件下,且t<
32
,点P在BC上运动时,△PQD是以PD为一腰的等腰三角形,在直线BD上找一点E,在x轴上找一点F,是否存在以E,F,P,Q为顶点的平行四边形?若存在,求出E,F两点坐标;若不存在,请说明理由.

查看答案和解析>>

如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题.
(1)画出梯形ABCD的对称轴MN.
(2)若A点坐标为(0,0),写出B、C、D的坐标.
(3)以P点为位似中心,画出梯形ABCD的位似图形A′B′C′D′,并使AB:A′B′=1:2.

查看答案和解析>>

如图,在直角梯形ABCD中,以B点为原点建立直角坐标系,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.
(1)求证:AD=AE;
(2)若AD=8,DC=4,AB=10,求直线AC的解析式;
(3)在(2)中的条件下,在直线AC上是否存在P点,使得△PAD的面积等于△ABE的面积?若存在,请求出P的坐标;若不存在,请说明理由.

查看答案和解析>>

如图,在直角坐标系中,矩形ABCD的四个顶点在正三角形OEF的边上.已知正三角形OEF的边长为2,记AB的长为x.
(1)求F点的坐标及过O、E、F三点的抛物线的解析式.
(2)记点C关于直线OF的对称点为G,问x取什么值时,点G恰好落在y轴上.
(3)在条件(2)下,点P是过O、E、F三点的抛物线上的一个动点P,问是否存在点P,使点P、A、F、G四点构成梯形?如存在,求出点P的坐标;如不存在,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,反比例函数y=数学公式(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.

查看答案和解析>>


同步练习册答案