13.利用下图两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理.这个定理称为 .该定理的结论其数学表达式是 . 查看更多

 

题目列表(包括答案和解析)

(2013•青岛)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图1和图2发现并验证了平方差公式和完全平方公式.
这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.

【研究速算】
提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
几何建模:
用矩形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图3,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形上面.
(2)分析:原矩形面积可以有两种不同的表达方式:47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.
归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果
十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果

【研究方程】
提出问题:怎样图解一元二次方程x2+2x-35=0(x>0)?
几何建模:
(1)变形:x(x+2)=35.
(2)画四个长为x+2,宽为x的矩形,构造图4
(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并注明相关线段的长)
【研究不等关系】
提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?
几何建模:
(1)画长y+3,宽y+2的矩形,按图5方式分割
(2)变形:2y+5=(y+3)+(y+2)
(3)分析:图5中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分部分的面积可表示为y+2,由图形的部分与整体的关系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
归纳提炼:
当a>2,b>2时,表示ab与a+b的大小关系.
根据题意,设a=2+m,b=2+n(m>0,n>0),要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图并注明相关线段的长)

查看答案和解析>>

外交是内政的外延,它牵涉到国家的安全与国家的生存。现今世界连成一体,成功的外交能把本国很好地融入到这个整体中,从而使自身的形象和利益最大化。
下列材料反映了中国百年来外交的风雨历程,请结合材料和所学知识回答问题。
材料一:1793年英国马嘠尔尼使团来华,乾隆皇帝颁布上谕,宣称:“各处藩封到天朝进贡观光者,不特陪臣俱行三跪九叩之礼,即皇王亲王至,亦同此礼,今尔国王遣尔(指马嘠尔尼)前来祝嘏(福),自应遵天朝法度,免失尔国王祝厘纳贡之诚。”
——摘编自徐中约《中国近代史:1600—2000中国的奋斗》
材料二:鸦片战争后开放的通商口岸(如图)

材料三:新中国成立以来,在外交方面取得了辉煌的成就。截止2008年底,中国与171个国家建立了外交关系,共参加了130多个政府间国际组织,缔结了近20000项双边条约,参加了300多个多边条约,参加了24项联合国维和行动,派出维和官兵11063人次。                            ——摘自中国外交部编《中国外交》(2009年版)
材料四:进入新的世纪,中国以前所未有的深度和广度,参与到反恐、防扩散、应对气候变化等全球性问题的讨论和解决中,人们越来越频繁地使用“负责任的大国”来界定中国在国际上的角色。 
材料五:温家宝总理说:“我们要走一条和一些大国不一样的道路,这条道路就是和平崛起的道路。这是中国在总结世界和中国社会发展的历史和根据中国的现实情况作出的理性选择。”                                                           ——新华网
请回答:
(1)依据材料一指出当时清朝统治者的对外态度。(2分)
(2)依据材料二及所学知识指出我国当时的外交特点及其原因。(6分)  
(3)依据材料三及所学知识概括新中国外交的基本特点及其形成的主要原因。(6分)
(4)结合材料四及所学知识,举例说明改革开放以来中国成为国际社会“负责任大国”的主要外交活动。(4分,举两例即可)    
(5)坚持走和平发展道路与构建和谐世界是中国外交战略思想的发展与创新。请结合材料五及所学知识分析中国为什么要走和平崛起的道路?(8分)
(6)纵观中国百年来外交的风雨历程,你可得到什么认识或启示?(4分)

查看答案和解析>>

阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图a可以得到a2+3ab+2b2=(a+2b)(a+b).请回答下列问题:

(1)写出图b中所表示的数学等式是
2a2+5ab+2b2=(2a+b)(a+2b)
2a2+5ab+2b2=(2a+b)(a+2b)

(2)试画出一个长方形,使得用不同的方法计算它的面积时,能得到2a2+3ab+b2=(2a+b)(a+b).
(3)课本68页练一练,有一题:如图c,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x、y的多少表示)
4xy=(x+y)2-(x-y)2
4xy=(x+y)2-(x-y)2

(4)通过上述的等量关系,我们可知:
当两个正数的和一定时,它们的差的绝对值越小则积越
(填“大”或“小”).
当两个正数的积一定时,它们的差的绝对值越小则和越
(填“大”或“小”).
(5)利用上面得出的结论,对于正数x,求:
代数式:2x+
2x
的最小值是
4
4

代数式:x(6-x)的最大值是
9
9

查看答案和解析>>

解决下面问题:
如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.

小新同学是这样思考的:
在平时的学习中,有这样的经验:假如△ABC是等腰三角形,那么在给定一组对应条件,如图a,BE,CD分别是两底角的平分线(或者如图b,BE,CD分别是两条腰的高线,或者如图c,BE,CD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.

图a                      图b                      图c
请参考小新同学的思路,解决上面这个问题..

查看答案和解析>>

解决下面问题:

如图,在ABC中,A是锐角,点DE分别在ABAC上,且BECD相交于点O探究BDCE之间的数量关系,并证明你的结论.

小新同学是这样思考的:

在平时的学习中,有这样的经验:假如ABC是等腰三角形,那么在给定一组对应条件,如图aBECD分别是两底角的平分线(或者如图bBECD分别是两条腰的高线,或者如图cBECD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.

a b c

请参考小新同学的思路,解决上面这个问题..

 

查看答案和解析>>


同步练习册答案