16.如下图所示.△ABC中.DE是AC的垂直平分线.AE=4cm.△ABD的周长为13cm.则△ABC的周长为 cm 查看更多

 

题目列表(包括答案和解析)

如下图所示,在△ABC中AB=AC,DE是AB的垂直平分线,D为垂足,交AC于E,若AB=a,△ABC的周长为b,求△BCE的周长。

查看答案和解析>>

如下图所示,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为(    )cm。

查看答案和解析>>

如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=
1
2
AB
.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.

请根据从上面材料中所得到的信息解答下列问题:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=
a
2
a
2

(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=
15cm
15cm

(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=
3:1
3:1

(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.

查看答案和解析>>

已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们 的延长线)于E、F当∠EDF绕D点旋转到DE⊥AC于E时(如图所示①),易证S△DEF+S△CEF=S△ABC当∠EDF绕D点旋转到DE和AC不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明。

查看答案和解析>>

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.

探究展示:小宇同学展示出如下正确的解法:

解:OM=ON,证明如下:

连接CO,则CO是AB边上中线,

∵CA=CB,∴CO是∠ACB的角平分线.(依据1)

∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)

反思交流:

(1)上述证明过程中的“依据1”和“依据2”分别是指:

依据1:________

依据2:________

(2)你有与小宇不同的思考方法吗?请写出你的证明过程.

拓展延伸:

(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>


同步练习册答案