9.如下图.点P是Rt△ABC内任一点.过P点作直线截△ABC.使截得的三角形与△ABC相似.满足这样条件的直线共有( ). A.3条 B.4条 C.5条 D.6条 查看更多

 

题目列表(包括答案和解析)

(2012•顺义区一模)问题:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是射线CB上任意一点,△ADE是等边三角形,且点D在∠ACB的内部,连接BE.探究线段BE与DE之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为
60°
60°
,点E落在
AB的中点处
AB的中点处
,容易得出BE与DE之间的数量关系为
BE=DE
BE=DE

(2)当点D在如图3的位置时,请你画出图形,研究线段BE与DE之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.

查看答案和解析>>

(1) A、B两村之间的公路进行对接修筑,甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.下图23-(1)是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:

①乙工程队每天修公路多少米?

②分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式;

③若乙工程队后来进入施工后,不提前离开,直到公路对接完工,那么施工过程共需几天?

(2)如图23-(2),直线分别与x轴、y轴交于点A、B,在第一象限取点C,使△ABC成为等腰直角三角形;如果在第二象限内有一点P(a ),使△ABP的面积与Rt△ABC的面积相等,求a的值.

查看答案和解析>>

问题:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是射线CB上任意一点,△ADE是等边三角形,且点D在∠ACB的内部,连接BE.探究线段BE与DE之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为______,点E落在______,容易得出BE与DE之间的数量关系为______;
(2)当点D在如图3的位置时,请你画出图形,研究线段BE与DE之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.

查看答案和解析>>

问题:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是射线CB上任意一点,△ADE是等边三角形,且点D在∠ACB的内部,连接BE.探究线段BE与DE之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为______,点E落在______,容易得出BE与DE之间的数量关系为______;
(2)当点D在如图3的位置时,请你画出图形,研究线段BE与DE之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.

查看答案和解析>>

等边三角形是大家熟悉的特殊三角形,除了以前我们所知道的它的一些性质外,它还有很多其它的性质,我们来研究下面的问题:

如图1,点P是等边△ABC的中心,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,易证:BE+CF+AD=EC+AF+BD
问题提出:如图2,若点P是等边△ABC内任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?
为了解决这个问题,现给予证明过程:
证明:连接PA、PB、PC,在Rt△PBE和Rt△PEC中,PB2=PE2+BE2,PC2=PE2+CE2,∴PB2-PC2=BE2-CE2
同理可证:PC2-PA2=CF2-AF2,PA2-PB2=AD2-BD2
将上述三式相加得:BE2-CE2+CF2-AF2+AD2-BD2=0,即:(BE+CE)(BE-CE)+(CF+AF)(CF-AF)+(AD+BD)(AD-BD)=0
∵△ABC是等边三角形,设边长为a.
∴BE+CE=CF+AF=AD+BD=a;
∴a(BE-CE)+a(CF-AF)+a(AD-BD)=0;
∴BE-CE+CF-AF+AD-BD=0;
∴BE+CF+AD=EC+AF+BD.
问题拓展:如图3,若点P是等边△ABC的边上任意一点,PD⊥AB于D,PF⊥AC于F,上述结论还成立吗?若成立,请直接写出结论,不用证明;若不成立,请说明理由.
问题解决:
如图4,若点P是等边△ABC外任意一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,上述结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>


同步练习册答案