19. 已知直线和直线. (1)求两条直线和的交点坐标.并判断该交点落在平面直角坐标系的哪一个象限内. (2)画出两条直线的图像. 查看更多

 

题目列表(包括答案和解析)

(本题10分)已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.

【小题1】观察计算:(1)如图1,当a=4,b=1时,四边形ABFD的面积为          
(2)如图2,当a=4,b=2时,四边形ABFD的面积为          
(3)如图3,当a=4,b=3时,四边形ABFD的面积为          
【小题2】探索发现:(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;

【小题3】综合应用:(5)农民赵大伯有一块正方形的土地(如图),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.(要求尺规作图,保留作图痕迹)

查看答案和解析>>

(本题8分) 已知二次函数的图象与轴两交点的坐标分别为(,0),

,0)().

(1)证明

(2)若该函数图象的对称轴为直线,试求二次函数的最小值.

 

查看答案和解析>>

.(本题12分)

已知抛物线y=ax2+bx+c经过P(,3),E(,0)及原点O(0,0)

(1)求抛物线的解析式;

(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧

且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y

轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC(如图).是否存在点Q,使得△OPC与△PQB相似?若存在,求出Q点的坐标;若不存在,请说明理由;

(3)如果符合(2)中的Q点在x轴的上方,连接OQ,矩形OABC内的四个三角形△OPC,△PQB,△OQP,△OQA之间存在怎样的关系,为什么?

 

查看答案和解析>>

(本题10分)已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.

1.观察计算:(1)如图1,当a=4,b=1时,四边形ABFD的面积为          

(2)如图2,当a=4,b=2时,四边形ABFD的面积为          

(3)如图3,当a=4,b=3时,四边形ABFD的面积为          

2.探索发现:(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;

3.综合应用:(5)农民赵大伯有一块正方形的土地(如图),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.(要求尺规作图,保留作图痕迹)

 

查看答案和解析>>

.(本题12分)

已知抛物线y=ax2+bx+c经过P(,3),E(,0)及原点O(0,0)

(1)求抛物线的解析式;

(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧

且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y

轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC(如图).是否存在点Q,使得△OPC与△PQB相似?若存在,求出Q点的坐标;若不存在,请说明理由;

(3)如果符合(2)中的Q点在x轴的上方,连接OQ,矩形OABC内的四个三角形△OPC,△PQB,△OQP,△OQA之间存在怎样的关系,为什么?

 

查看答案和解析>>


同步练习册答案