存在非零常数T.满足.则称函数为休闲函数. 查看更多

 

题目列表(包括答案和解析)

对于函数y=f(x),定义:若存在非零常数M、T,使函数f(x)对定义域内的任意实数x,都满足f(x+T)-f(x)=M,则称函数y=f(x)是准周期函数,常数T称为函数y=f(x)的一个准周期.如函数f(x)=x+(-1)x(x∈Z)是以T=2为一个准周期且M=2的准周期函数.
(1)试判断2π是否是函数f(x)=sinx的准周期,说明理由;
(2)证明函数f(x)=2x+sinx是准周期函数,并求出它的一个准周期和相应的M的值;
(3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图象.

查看答案和解析>>

对于函数y=f(x),x∈D,如果存在非零常数T,使对任意的x∈D都有f(x+t)=f(x)成立,就称T为该函数的周期.请根据以上定义解答下列问题:若y=f(x)是R上的奇函数,且满足f(x+5)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2014)=______.

查看答案和解析>>

对于函数y=f(x),定义:若存在非零常数M、T,使函数f(x)对定义域内的任意实数x,都满足f(x+T)-f(x)=M,则称函数y=f(x)是准周期函数,常数T称为函数y=f(x)的一个准周期.如:函数f(x)=2x+sinx是以T=2π为一个准周期且M=4π的准周期函数.

(1)试判断2π是否是函数f(x)=sinx的准周期,说明理由;

(2)证明函数f(x)=x+(-1)x(x∈Z)是准周期函数,并求出它的一个准周期和相应的M的值;

(3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图像

查看答案和解析>>

对于函数f(x),定义:若存在非零常数M,T,使函数f(x)对定义域内的任意x,都满足f(x+T)-f(x)=M,则称函数y=f(x)是准周期函数,非零常数T称为函数y=f(x)的一个准周期.如函数f(x)=2x+sinx是以T=2π为一个准周期且M=4π的准周期函数.下列命题:

①2π是函数f(x)=sinx的一个准周期;

②f(x)=x+(-1)x(x∈z)是以T=2为一个准周期且M=2的准周期函数;

③函数f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是准周期函数;

④如果f(x)是一个一次函数与一个周期函数的和的形式,则f(x)一定是准周期函数;

⑤如果f(x+1)=-f(x)则函数h(x)=x+f(x)是以T=2为一个准周期且M=4的准周期函数;其中的真命题是________

查看答案和解析>>

一、选择题

CCCBB   BBDAB   CA

二、填空题

13、       14、2      15、    16、③④

三、解答题

17.解:

                 

                      

建议评分标准:每个三角函数“1”分。(下面的评分标准也仅供参考)

18.解:==--(2分)

= 

*      ----------------------------------------------------------(2分)

   

  -----2分)     原式= -------------(2分)

19.解:(1)由已知得,所以即三角形为等腰三角形。--------------------------------------------------------------------------------------------(3分)

(2)两式平方相加得,所以。------(3分)

,则,所以,而

这与矛盾,所以---------------------------------------(2分)

20.解:化简得--------------------------------------------------(2分)

(1)最小正周期为;--------------------------------------------------------------(2分)

(2)单调递减区间为-------------------------------(2分)

(3)对称轴方程为-------------------------------------------(1分)

对称中心为------------------------------------------------------(1分)

21.对方案Ⅰ:连接OC,设,则

      而

,即点C为弧的中点时,矩形面积为最大,等于

对方案Ⅱ:取弧EF的中点P,连接OP,交CD于M,交AB于N,设

如图所示。

所以当,即点C为弧EF的四等分点时,矩形面积为最大,等于

,所以选择方案Ⅰ。

22.解:(1)不是休闲函数,证明略

(2)由题意得,有解,显然不是解,所以存在非零常数T,使

于是有,所以是休闲函数。

(3)显然时成立;

时,由题义,,由值域考虑,只有

时,成立,则

时,成立,则,综合的的取值为

 

 

 


同步练习册答案