26. 已知:在等腰三角形ABC中.AB=AC.周长为16.AC边上的中线BD把△ABC分成周长差为4的两个三角形.求△ABC各边的长. 查看更多

 

题目列表(包括答案和解析)

精英家教网“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.
如图,已知△ABC,①AB=AC  ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:
 

求证:
 

证明:
 

查看答案和解析>>

“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.
如图,已知△ABC,①AB=AC  ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:________;
求证:________;
证明:________.

查看答案和解析>>

“等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合”的定理是将“等腰三角形”作为一个不变的已知条件参与组合得到的三个真命题,在学习了等腰三角形的判定后,可将该定理作如下的引伸.
如图,已知△ABC,①AB=AC  ②∠1=∠2 ③AD⊥BC ④BD=DC中,若其中任意两组成立,可推出其余两组成立.
显然以上六个命题中,有三个就是“等腰三角形的三线合一定理”,而其它三个是否成立,请你证明其中一个.(注意此题的得分要依题目本身证明的难易而定,请你选择)
已知:______;
求证:______;
证明:______.
精英家教网

查看答案和解析>>

求证:等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.
已知:△ABC中,AB=AC,点P是BC边上任意一点,PE⊥AB于E,PF⊥AC于F,CD是AB边上的高线.
求证:PE+PF=CD
证明:连接AP,
∵S△ABP+S△ACP=S△ABC
数学公式
∵AB=AC
∴PE+PF=CD

【变式应用】
请利用“类比”和“化归”两种方法解答下面问题:
求证:等边三角形内上任意一点到三边的距离和等于一边上的高.
已知:点P是等边△ABC内任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AH是BC边上的高线.
求证:PD+PE+PF=AH
证明:
方法(一)类比:通过类比上题的思路和方法,模仿上题的“面积法”解决本题.
连接AP,BP,CP
方法(二)化归:如图,通过MN在等边△ABC中构造符合“老题”规律的等边△AMN,化“新题”为“老题”,直接利用“老题重现”的结论解决问题.
过点P作MN∥BC,交AB于M,交AC于N,交AH于G.

【提炼运用】
已知:点P是等边△ABC内任意一点,设到三边的距离分别为a、b、c,且使得以a、b、c为边能够构成三角形.
请在图中画出满足条件的点P一切可能的位置,并对这些位置加以说明.

查看答案和解析>>

精英家教网【老题重现】
求证:等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.
已知:△ABC中,AB=AC,点P是BC边上任意一点,PE⊥AB于E,PF⊥AC于F,CD是AB边上的高线.
求证:PE+PF=CD
证明:连接AP,
∵S△ABP+S△ACP=S△ABC
AB×PE
2
+
AC×PF
2
=
AB×CD
2

∵AB=AC
∴PE+PF=CD

【变式应用】
请利用“类比”和“化归”两种方法解答下面问题:
求证:等边三角形内上任意一点到三边的距离和等于一边上的高.
已知:点P是等边△ABC内任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AH是BC边上的高线.精英家教网
求证:PD+PE+PF=AH
证明:
方法(一)类比:通过类比上题的思路和方法,模仿上题的“面积法”解决本题.
连接AP,BP,CP
方法(二)化归:如图,通过MN在等边△ABC中构造符合“老题”规律的等边△AMN,化“新题”为“老题”,直接利用“老题重现”的结论解决问题.
过点P作MN∥BC,交AB于M,交AC于N,交AH于G.

【提炼运用】
已知:点P是等边△ABC内任意一点,设到三边的距离分别为a、b、c,且使得以a、b、c为边能够构成三角形.
请在图中画出满足条件的点P一切可能的位置,并对这些位置加以说明.
精英家教网

查看答案和解析>>


同步练习册答案