已知点和关于轴对称.则的值为( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知二次函数y=ax2+bx+c的图象过点A(-1,0)和C(0,1)
(1)若此抛物线对称轴是直线x=
12
,则抛物线上关于点C的对称点的坐标是
 

(2)若抛物线的顶点在第一象限,设t=a+b+c,则t的取值范围为是
 

查看答案和解析>>

已知抛物线y=ax2+bx+c过点C(0,3),顶点P(2,-1),直线x=m(m>3)交x轴于点D,抛物线交x轴于A、B两点(如图10).
(1)①求得抛物线的函数解析式为
y=x2-4x+3
y=x2-4x+3

②A、B两点的坐标是A(
(1,0)
(1,0)
),B(
(3,0)
(3,0)
);
③该抛物线关于原点成中心对称的抛物线的函数解析式是
y=-x2-4x-3
y=-x2-4x-3

④将已知抛物线平移,使顶点落在原点,则平移后得到的新抛物线的函数解析式是
y=x2
y=x2

(2)若直线x=m(m>3)上有一点E(E在第一象限),使得以B、E、D为顶点的三角形和以A、C、O为顶点的三角形相似,求E点的坐标(用m的代数式表示)
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形,若存在,求出m的值及平行四边形ABEF的面积;若不存在,请说明理由.

查看答案和解析>>

已知抛物线y=ax2+bx+c过点C(0,3),顶点P(2,-1),直线x=m(m>3)交x轴于点D,抛物线交x轴于A、B两点(如图10).
(1)①求得抛物线的函数解析式为______;
②A、B两点的坐标是A(______),B(______);
③该抛物线关于原点成中心对称的抛物线的函数解析式是______;
④将已知抛物线平移,使顶点落在原点,则平移后得到的新抛物线的函数解析式是______.
(2)若直线x=m(m>3)上有一点E(E在第一象限),使得以B、E、D为顶点的三角形和以A、C、O为顶点的三角形相似,求E点的坐标(用m的代数式表示)
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形,若存在,求出m的值及平行四边形ABEF的面积;若不存在,请说明理由.

查看答案和解析>>

已知:如图,平面直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(P与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当作业宝点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)BC、AP1的长;
(2)①求过B、P1、D三点的抛物线的解析式;
②求当⊙P与抛物线的对称轴相切时⊙P的半径r的值;
(3)以点E为圆心作⊙E与x轴相切,当直线L把矩形ABCD分成两部分的面积之比为3:5时,则⊙P和⊙E的位置关系如何?并说明理由.

查看答案和解析>>

已知:如图,平面直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(P与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)BC、AP1的长;
(2)①求过B、P1、D三点的抛物线的解析式;
②求当⊙P与抛物线的对称轴相切时⊙P的半径r的值;
(3)以点E为圆心作⊙E与x轴相切,当直线L把矩形ABCD分成两部分的面积之比为3:5时,则⊙P和⊙E的位置关系如何?并说明理由.

查看答案和解析>>


同步练习册答案