题目列表(包括答案和解析)
如图,设是圆上的动点,点是在轴上投影,为上一点,且.当在圆上运动时,点的轨迹为曲线. 过点且倾斜角为的直线交曲线于两点.
(1)求曲线的方程;
(2)若点F是曲线的右焦点且,求的取值范围.
若曲线的焦点F恰好是曲线的右焦点,且交点的连线过点F,则曲线的离心率为
A. B. C. D.
曲线的焦点恰好是曲线的右焦点,且曲线与曲线交点连线过点,则曲线的离心率是
A. B. C. D.
曲线的焦点恰好是曲线的右焦点,且曲线与曲线交点连线过点,则曲线的离心率是
A. B. C. D.
A.椭圆 B.双曲线 C.抛物线 D.以上都有可能
一、
1.D 2.C 3.B 4.D 5.C 6.A 7.D 8.B 9.C 10.C
11.D 12.A
【解析】
5.解:,则.
6.解:线性规划问题可先作出可行域(略),设,则,可知在点(1,1)处取最小值,.
7.解:,由条件知曲线在点(0,1)处的切线斜率为,则.
8.解:如图
正四棱锥中,取中点,连接、,易知就是侧面与底面所成角,面,则.
9.解:,展开式中含的项是,其系数是.
10.解:,其值域是.
11.解:,设离心率为,则,由知.
12.解:如图
书馆
正四面体中,是中心,连,此四面体内切球与外接球具有共同球心,必在上,并且等于内切球半径,等于外接球半径.记面积为,则,从而
.
二、填空题
13..
解:,与共线.
14.120种.
解:按要求分类相加,共有种,或使用间接法:种.
15..
解:曲线 ①,化作标准形式为,表示椭圆,由于对称性,取焦点,过且倾角是135°的弦所在直线方程为:,即 ②,联立式①与式②消去得:
,由弦长公式得:.
16.充要条件①:底面是正三角形,顶点在底面的射影恰是底面的中心.
充要条件②:底面是正三角形,且三条侧棱长相等,
再如:底面是正三角形,且三个侧面与底面所成角相等;底面是正三角形,且三条侧棱与底面所成角相等;三条侧棱长相等,且三个侧面与底面所成角相等;三个侧面与底面所成角相等,三个侧面两两所成二面角相等.
三、解答题
17.解:设等差数列的公差为、、成等比数列,即,
,得或.
时是常数列,,前项和
时,的前项和
或.
18.解:,则,,.
由正弦定理得:
,
,则
.
19.解:已知甲击中9环、10环的概率分别是0.3、0.2,则甲击中8环及其以下环数的概率是0.5;乙击中9环、10环的概率分别为0.4、0.3,则乙击中8环及其以下环数的概率是0.3;丙击中9环、10环的概率是0.6、0.4,0.6+0.4=1,则丙击中8环及其以下环数是不可能事件.
(1)记在一轮比赛中“丙击中的环数不超过甲击中的环数”为事件,包括“丙击中9环且甲击中9或10环”、“丙击中10环且甲击中10环”两个互斥事件,则
.
(2)记在一轮比赛中,“甲击中的环数超过丙击中的环数”为事件,“乙击中的环数超过丙击中的环数”为事件,则与相互独立,且,.
所以在一轮比赛中,甲、乙击中的环数都没有超过丙击中的环数的概率为:
.
20.(1)证:已知是正三棱柱,取中点,中点,连,,则、、两两垂直,以、、为、、轴建立空间直角坐标系,又已知,
则.
,,则,又因与相交,故面.
(2)解:由(1)知,是面的一个法向量.
,设是面的一个法向量,则①,②,取,联立式①与式②解得,则.
二面角是锐二面角,记其大小为.则
,
二面角的大小,亦可用传统方法解决(略).
21.解:.
(1)在处取得极值,则.
(2),
恒成立,必有解.
易知函数图象(抛物线)对称轴方程是.
在上是增函数,则时恒有,进而必有(数形结合)
或或,
故的取值范围是:.
22.解:(1)已知,求得线段的两个三等分点、,直线过时,,直线过时,,故或.
(2)已知是椭圆短轴端点和焦点,易求得椭圆方程是:,所在直线的方程为.
直线与椭圆相交于、,设,,由直线与线段相交(交点不与、重合)知.
点在椭圆上,则,解得到直线的距离
,
点到直线的距离;
设,则,由知,则:
,
当即时,取到最大值.
,0与中,0距更远,当且时,
,
.
∴四边形的面积,当时,.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com