(3)了解证明不等式的基本方法:比较法.综合法.分析法.反证法,放缩法 Ⅲ.考试形式与试卷结构 考试形式:考试采用闭卷.笔试形式.考试限定用时为120分钟.考试不允许使用计算器. 试卷结构:试卷包括第Ⅰ卷和第Ⅱ卷.试卷满分为150分.第Ⅰ卷为单项选择题.主要考查数学的基本知识和基本技能.共12题.60分.第Ⅱ卷为填空题和解答题.主要考查数学的思想.方法和能力.填空题共4题.16分.填空题只要求直接填写结果.不必写出计算过程或推证过程.解答题包括计算题.证明题和应用题等, 共6题, 74分.解答应写出文字说明.演算步骤或推证过程. Ⅳ.题型示例 查看更多

 

题目列表(包括答案和解析)

已知点P在曲线C:y=
1
x
(x>1)上,设曲线C在点P处的切线为l,若l与函数y=kx(k>0)的图象的交点为A,与x轴的交点为B,设点P的横坐标为t,A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=f(
an-1
)
(n≥2),数列{bn}满足bn=
1
an
-
k
3
,求an与bn
(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式:a1+a2+…+an
3n-8k
k

查看答案和解析>>

已知点P在曲线C:y=
1
x
 (x>1)
上,曲线C在点P处的切线与函数y=kx(k>0)的图象交于点A,与x轴交于点B,设点P的横坐标为t,点A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(1)求f(t)的解析式;
(2)设数列{an}满足a1=1,an=f(
an-1
) (n≥2 且 x∈N*)
,求数列{an}的通项公式;
(3)在 (2)的条件下,当1<k<3时,证明不等式a1+a2+…+an
3n-8k
k

查看答案和解析>>

已知点P在曲线C:y=(x>1)上,设曲线C在点P处的切线为l,若l与函数y=kx(k>0)的图象的交点为A,与x轴的交点为B,设点P的横坐标为t,A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=(n≥2),数列{bn}满足bn=,求an与bn
(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式:a1+a2+…+an

查看答案和解析>>

已知点P在曲线C:y=(x>1)上,设曲线C在点P处的切线为l,若l与函数y=kx(k>0)的图象的交点为A,与x轴的交点为B,设点P的横坐标为t,A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(Ⅰ)求f(t)的解析式;
(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=(n≥2),数列{bn}满足bn=,求an与bn
(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式:a1+a2+…+an

查看答案和解析>>

已知点P在曲线C:上,曲线C在点P处的切线与函数y=kx(k>0)的图象交于点A,与x轴交于点B,设点P的横坐标为t,点A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(1)求f(t)的解析式;
(2)设数列{an}满足,求数列{an}的通项公式;
(3)在 (2)的条件下,当1<k<3时,证明不等式

查看答案和解析>>


同步练习册答案