与. 与的关系.你能由此发现什么规律吗?(可指明学生回答.板书) 查看更多

 

题目列表(包括答案和解析)

小明同学利用A、B两物体、砝码、泡沫等器材探究“压力的作用效果与什么因素有关”的实验。如图(1)所示。

(1)实验中小明是通过观察            来比较压力作用效果的。
(2)比较甲、乙两图所示实验,能够得到的结论是           
(3)若要探究“压力的作用效果与受力面积大小的关系”,应通过比较图   所示实验。
(4)小华同学实验时将物体B沿竖直方向切成大小不同的两块,如图(2)所示。他发现
它们对泡沫的压力作用效果相同,由此他得出的结论是:压力作用效果与受力面积无关。你认为他在探究过程中存在的问题是                    

查看答案和解析>>

如果把连接梯形两腰的中点的线段叫做梯形的中位线,那么梯形的中位线有什么特征呢?

如图,在梯形ABCD中,AD∥BC,点E、F分别为两腰AB、CD的中点.则EF为梯形ABCD的中位线.仿照三角形的中位线定理,请你猜想EF的长与上、下底的关系.

猜想:EF=________.

我们按如下思路探究:

(1)连接AF并延长交BC的延长线于点G,你发现△ADF和△GCF有怎样的关系?证明你的结论.

(2)由(1)的结论,可以得出EF是△ABG中怎样的线段?

(3)由此你能证明你的猜想吗?试一试.

查看答案和解析>>

如图,平面直角坐标系中,△ABC为等边三角形,其中点A、B、C的坐标分别为(-3,-1)、(-3,-3)、(-3+数学公式,-2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的对称图形,得△A2B2C2
(1)直接写出点C1、C2的坐标;
(2)能否通过一次旋转将△ABC旋转到△A2B2C2的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由);
(3)设当△ABC的位置发生变化时,△A2B2C2、△A1B1C1与△ABC之间的对称关系始终保持不变.
①当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合并直接写出此时点C的坐标;
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少点C的坐标又是什么?

查看答案和解析>>

如图,平面直角坐标系中,△ABC为等边三角形,其中点A、B、C的坐标分别为(-3,-1)、(-3,-3)、(-3+,-2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的对称图形,得△A2B2C2
(1)直接写出点C1、C2的坐标;
(2)能否通过一次旋转将△ABC旋转到△A2B2C2的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由);
(3)设当△ABC的位置发生变化时,△A2B2C2、△A1B1C1与△ABC之间的对称关系始终保持不变.
①当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合并直接写出此时点C的坐标;
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少点C的坐标又是什么?

查看答案和解析>>

如图,平面直角坐标系中,△ABC为等边三角形,其中点A、B、C的坐标分别为(-3,-1)、(-3,-3)、(-3+,-2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的对称图形,得△A2B2C2
(1)直接写出点C1、C2的坐标;
(2)能否通过一次旋转将△ABC旋转到△A2B2C2的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由);
(3)设当△ABC的位置发生变化时,△A2B2C2、△A1B1C1与△ABC之间的对称关系始终保持不变.
①当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合并直接写出此时点C的坐标;
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少点C的坐标又是什么?

查看答案和解析>>


同步练习册答案