某人定制了一批地砖. 每块地砖 是边长为米的正方形.点E.F分别在边BC和CD上. △.△和四边形均由单一材料制成.制成△.△和四边形的三种材料的每平方米价格之比依次为3:2:1. 若将此种地砖按图2所示的形式铺设.能使中间的深色阴影部分成四边形. 查看更多

 

题目列表(包括答案和解析)

某人定制了一批地砖. 每块地砖 (如图1所示)是边长为米的正方形,点EF分别在边BCCD上, △、△和四边形均由单一材料制成,制成△、△和四边形的三种材料的每平方米价格之比依次为3:2:1. 若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形.

 (1) 求证:四边形是正方形;

(2) 在什么位置时,定制这批地砖所需的材料费用最省?

查看答案和解析>>

19.某人定制了一批地砖.每块地砖(如图1所示)是边长为米的正方形,点EF分别在边BCCD上,△、△和四边形均由单一材料制成,制成△、△和四边形的三种材料的每平方米价格之比依次为3:2:1.若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形.

      

       图1                         图2

(1) 求证:四边形是正方形;

(2) 在什么位置时,定制这批地砖所需的材料费用最省?

查看答案和解析>>

某人定制了一批地砖. 每块地砖 (如图1所示)是边长为米的正方形,点EF分别在边BCCD上, △、△和四边形均由单一材料制成,制成△、△和四边形的三种材料的每平方米价格之比依次为3:2:1. 若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形.


(1) 求证:四边形是正方形;
(2) 在什么位置时,定制这批地砖所需的材料费用最省?

查看答案和解析>>

某人定制了一批地砖.每块地砖〔如图(1)所示〕是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格之比依次为3∶2∶1.若将此种地砖按图(2)所示的形式铺设,能使中间的深色阴影部分成四边形EFGH.

(1)求证:四边形EFGH是正方形.

(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?

(1)

(2)

查看答案和解析>>

某人定制了一批地砖.每块地砖(如图1所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,且CE=CF,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格之比依次为3:2:1.若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形EFGH.问E、F在什么位置时,定制这批地砖所需的材料费用最省?

查看答案和解析>>

CBACA;DCADC;DB

30;9,27;1;

17. 解:易得                                            ………… 3分

当a=1时, B=,满足;                           ………… 5分

时,B={x|2a<x<a2+1},要使即BA,

必须,解之得                               ………… 8分

综上可知,存在这样的实数a满足题设成立.       ………… 10分

18. 解: (1) 图2是由四块图1所示地砖绕点按顺时针旋转后得到,△为等腰直角三角形,     四边形是正方形.                                  …… 4分

(2) 设,则,每块地砖的费用为,制成△、△和四边形三种材料的每平方米价格依次为3a2aa (元),                          …… 6分

       

                                                

    .                                …… 10分

    由,当时,有最小值,即总费用为最省. 

    答:当米时,总费用最省.                             …… 12分

 

19. 解:(Ⅰ)易得的解集为恒成立.解得.………………… 3分

因此的对称轴, 故函数在区间上不单调,从而不存在反函数。                                                ……………………… 5分

(Ⅱ)由已知可得,则

,

.                          ………………………7分

①     若,则上单调递增,在上无极值;

②     若,则当时,;当时,.

时,有极小值在区间上存在极小值,.

③     若,则当时,;当时,.

*时,有极小值.

在区间上存在极小值 .……………… 10分

综上所述:当时,在区间上存在极小值。………… 12分

20. 解:(Ⅰ)当时,

,即数列的通项公式为       …… 4分

 (Ⅱ)当时,

               

                                …… 8分

由此可知,数列的前n项和                  …… 12分

21. 解:(Ⅰ).                          …… 4分

(Ⅱ)易得的值域为A=,设函数的值域B,若对于任意总存在,使得成立,只需。               …… 6分

显然当时,,不合题意;

时,,故应有,解之得: ;…… 8分

时,,故应有,解之得:。…… 10分

综上所述,实数的取值范围为。               …… 12分

22. 解:(Ⅰ).

                                                                …… 3分

  (Ⅱ) …… 6分

 

 由错位相减法得:

    

所以:。   …… 8分

  (Ⅲ)

为递增数列 。

 中最小项为     …… 12分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案