查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a

    D、E分别为棱AB、BC的中点, M为棱AA1­上的点,二面角MDEA为30°.

   (1)求MA的长;w.w.w.k.s.5.u.c.o.m      

   (2)求点C到平面MDE的距离。

查看答案和解析>>

(本小题满分12分)某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。

(1)求其中的甲乙两人必须相邻的站法有多少种? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙两人不相邻的站法有多少种?

(3)求甲不站最左端且乙不站最右端的站法有多少种 ?

查看答案和解析>>

(本小题满分12分)

某厂有一面旧墙长14米,现在准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房,工程条件是①建1米新墙费用为a元;②修1米旧墙的费用为元;③拆去1米旧墙,用所得材料建1米新墙的费用为元,经过讨论有两种方案: (1)利用旧墙的一段x米(x<14)为矩形厂房一面的边长;(2)矩形厂房利用旧墙的一面边长x≥14.问如何利用旧墙,即x为多少米时,建墙费用最省?(1)、(2)两种方案哪个更好?

 

查看答案和解析>>

(本小题满分12分)

已知a,b是正常数, ab, xy(0,+∞).

   (1)求证:,并指出等号成立的条件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的结论求函数的最小值,并指出取最小值时相应的x 的值.

查看答案和解析>>

(本小题满分12分)

已知a=(1,2), b=(-2,1),xaby=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR x?y=5,求证k≥1.

查看答案和解析>>

CBACA;DCADC;DB

30;9,27;1;

17. 解:易得                                            ………… 3分

当a=1时, B=,满足;                           ………… 5分

时,B={x|2a<x<a2+1},要使即BA,

必须,解之得                               ………… 8分

综上可知,存在这样的实数a满足题设成立.       ………… 10分

18. 解: (1) 图2是由四块图1所示地砖绕点按顺时针旋转后得到,△为等腰直角三角形,     四边形是正方形.                                  …… 4分

(2) 设,则,每块地砖的费用为,制成△、△和四边形三种材料的每平方米价格依次为3a2aa (元),                          …… 6分

       

                                                

    .                                …… 10分

    由,当时,有最小值,即总费用为最省. 

    答:当米时,总费用最省.                             …… 12分

 

19. 解:(Ⅰ)易得的解集为恒成立.解得.………………… 3分

因此的对称轴, 故函数在区间上不单调,从而不存在反函数。                                                ……………………… 5分

(Ⅱ)由已知可得,则

,

.                          ………………………7分

①     若,则上单调递增,在上无极值;

②     若,则当时,;当时,.

时,有极小值在区间上存在极小值,.

③     若,则当时,;当时,.

*时,有极小值.

在区间上存在极小值 .……………… 10分

综上所述:当时,在区间上存在极小值。………… 12分

20. 解:(Ⅰ)当时,

,即数列的通项公式为       …… 4分

 (Ⅱ)当时,

               

                                …… 8分

由此可知,数列的前n项和                  …… 12分

21. 解:(Ⅰ).                          …… 4分

(Ⅱ)易得的值域为A=,设函数的值域B,若对于任意总存在,使得成立,只需。               …… 6分

显然当时,,不合题意;

时,,故应有,解之得: ;…… 8分

时,,故应有,解之得:。…… 10分

综上所述,实数的取值范围为。               …… 12分

22. 解:(Ⅰ).

                                                                …… 3分

  (Ⅱ) …… 6分

 

 由错位相减法得:

    

所以:。   …… 8分

  (Ⅲ)

为递增数列 。

 中最小项为     …… 12分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案