已知函数f(x)=sin(x+)+sin(x-)+cosx+a (a∈R.a为常数).(Ⅰ)求函数f(x)的最小正周期, 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知函数f(x)=x-ax+(a-1)

(1)讨论函数的单调性;        

(2)证明:若,则对任意x,x,xx,有

查看答案和解析>>

(本小题满分12分)已知函数f (x)的定义域为R,对任意的x,x都满足f (x+x)=f (x)+f (x),当x>0时,f (x)>0.(1)试判断f (x)的奇偶性.(2)试判断f (x)的单调性,并证明.(3)若f (cos2θ-3)+f (4m-2mcosθ)>0对所有的θ∈[0,]恒成立,求实数m的取值范围.

查看答案和解析>>

(本小题满分12分)已知函数f (x) = a() + b

(1)当a = 1时,求f (x)的单调递减区间;(2)当a<0时,f (x)在[0,]上的值域是[2,3],求ab的值.

查看答案和解析>>

(本小题满分12分)已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.

(1)求a的值;

(2)记g(x)=bx2-1,若方程f(x)=g(x)的解集恰有3个元素,求b的取值范围.

查看答案和解析>>

(本小题满分12分)

已知函数f(x)=x2ax+b (a,b∈R)的图像经过坐标原点,且,数列{}的前n项和=f(n)(n∈N*).

(Ⅰ) 求数列{}的通项公式;(Ⅱ)若数列{}满足+ = ,求数列{}的前n项和.

查看答案和解析>>

一、选择题

1.C       2.B      3.C       4.C       5.A      6.C

7.B       8.D      9.C       10.C     11.D     12.D

二、填空题

13.    14.3       15.     16.②

三、解答题

17.解:由,                 ---------------2分

=3,即,               ---------------8分

从而                       ----------------12分

18. 解:(1)∵f (x)=2sinxcos+cos x+a=sin x+cos x+a

=2sin(x+)+a,                                                            ……4分

∴函数f(x)的最小正周期T=2π.                                         ……6分

(Ⅱ)∵x∈[-],∴-x+.                         …….7分

∴当x+=-,即x=时, fmin(x)=f(-)=-+a;    ……9分

x+=,即x=时, fmax(x)=f()=2+a.               ……11分

由题意,有(-+a)+(2+a)=.

a=-1.                                                ……12分

 19.(本小题满分12分)

(1)由题意得的最小正周期为                           -----------2分

                                        -------------4分 

是它的一个对称中心,

                          ----------------------6分

               ------------------------7分

(2)因为,                        ------------------------8分

所以欲满足条件,必须                          -------------------11分

                                           

即a的最大值为                                       -------------------12分

20. 解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为

所以这时租出了88辆车.                          -----------------------4分

 (Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为

,                    -------------------------8分

整理得.

所以,当x=4100时,最大,最大值为

即当每辆车的月租金定为4100元时,租赁公司的月收益最大,

最大月收益为304200元.                                    --------------------12分

21.解: (Ⅰ)∵为奇函数,∴

                                          ----------------------1分

的最小值为

                                       -----------3分

又直线的斜率为

因此,                                ------------5分

.                             -------------6分

(Ⅱ)

   ,列表如下:

得分  评卷人

极大

极小

   所以函数的单调增区间是.      -----------9分

上的最大值是,最小值是.  ---------12分

22. 解:(1)是奇函数,

       则恒成立                  ---------------------2分

      

          ------------------4分

   (2)又在[-1,1]上单调递减,------6分

        ----------------------------------------------------8分

      

       令

       则                   ----------------------------12分

      

                                          -------------------------------14分

 

 

 

 

 

 

 

 


同步练习册答案