(2)若在(0.)上是单调递减函数.求的最大值. . 查看更多

 

题目列表(包括答案和解析)

定义在(0,∞)上的单调递减函数f(x),若f(x)的导函数存在且满足
f(x)
f′(x)
>x
,则下列不等式成立的是(  )

查看答案和解析>>

定义在(0,∞)上的单调递减函数f(x),若f(x)的导函数存在且满足,则下列不等式成立的是( )
A.3f(2)<2f(3)
B.3f(4)<4f(3)
C.2f(3)<3f(4)
D.f(2)<2f(1)

查看答案和解析>>

函数y=f(x)定义在R上单调递减且f(0)≠0,对任意实数m、n,恒有f(m+n)=f(m)•f(n),集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=φ,则a的取值范围是
 

查看答案和解析>>

函数f(x)是定义在(-2,2)上的奇函数,且在(-2,2)上单调递减,若f(m-1)+f(2m-3)>0,求m的取值范围.

查看答案和解析>>

函数y=f(x)是定义在R上的恒不为零的函数,且对于任意的x、y∈R,都满足f(x)•f(y)=f(x+y),则下列四个结论中,正确的个数是(  )
(1)f(0)=0;     (2)对任意x∈R,都有f(x)>0;     (3)f(0)=1;
(4)若x<0时,有f(x)>f(0),则f(x)在R上的单调递减.

查看答案和解析>>

一、选择题

1.C       2.B      3.C       4.C       5.A      6.C

7.B       8.D      9.C       10.C     11.D     12.D

二、填空题

13.    14.3       15.     16.②

三、解答题

17.解:由,                 ---------------2分

=3,即,               ---------------8分

从而                       ----------------12分

18. 解:(1)∵f (x)=2sinxcos+cos x+a=sin x+cos x+a

=2sin(x+)+a,                                                            ……4分

∴函数f(x)的最小正周期T=2π.                                         ……6分

(Ⅱ)∵x∈[-],∴-x+.                         …….7分

∴当x+=-,即x=时, fmin(x)=f(-)=-+a;    ……9分

x+=,即x=时, fmax(x)=f()=2+a.               ……11分

由题意,有(-+a)+(2+a)=.

a=-1.                                                ……12分

 19.(本小题满分12分)

(1)由题意得的最小正周期为                           -----------2分

                                        -------------4分 

是它的一个对称中心,

                          ----------------------6分

               ------------------------7分

(2)因为,                        ------------------------8分

所以欲满足条件,必须                          -------------------11分

                                           

即a的最大值为                                       -------------------12分

20. 解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为

所以这时租出了88辆车.                          -----------------------4分

 (Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为

,                    -------------------------8分

整理得.

所以,当x=4100时,最大,最大值为

即当每辆车的月租金定为4100元时,租赁公司的月收益最大,

最大月收益为304200元.                                    --------------------12分

21.解: (Ⅰ)∵为奇函数,∴

                                          ----------------------1分

的最小值为

                                       -----------3分

又直线的斜率为

因此,                                ------------5分

.                             -------------6分

(Ⅱ)

   ,列表如下:

得分  评卷人

极大

极小

   所以函数的单调增区间是.      -----------9分

上的最大值是,最小值是.  ---------12分

22. 解:(1)是奇函数,

       则恒成立                  ---------------------2分

      

          ------------------4分

   (2)又在[-1,1]上单调递减,------6分

        ----------------------------------------------------8分

      

       令

       则                   ----------------------------12分

      

                                          -------------------------------14分

 

 

 

 

 

 

 

 


同步练习册答案