上式从2到n求和得 查看更多

 

题目列表(包括答案和解析)

精英家教网从某校高三年级800名男生中随机抽取50名学生测量其身高,据测量被测学生的身高全部在155cm到195cm之间.将测量结果按如下方式分成8组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组得到的频率分布直方图的一部分.已知:第1组与第8组的人数相同,第6组、第7组和第8组的人数依次成等差数列.?
(1)求下列频率分布表中所标字母的值,并补充完成频率分布直方图;
分组 频数 频率 频率/组距
[180,185) x y z
[185,190) m n p
(2)若从身高属于第6组和第8组的所有男生中随机的抽取2名男生,记他们的身高分别为x、y,求满足:|x-y|≤5事件的概率.

查看答案和解析>>

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

 

男性

女性

合计

反感

10

 

 

不反感

 

8

 

合计

 

 

30

已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是

(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?

(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

P(K2>k)

0.05

0.025

0.010

0.005

k

3.841

5.024

6.635

7.879

下面的临界值表供参考:

(参考公式:K2=,其中n="a+b+c+d)"

 

查看答案和解析>>

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:

 
男性
女性
合计
反感
10
 
 
不反感
 
8
 
合计
 
 
30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
P(K2>k)
0.05
0.025
0.010
0.005
k
3.841
5.024
6.635
7.879
下面的临界值表供参考:
(参考公式:K2=,其中n="a+b+c+d)"

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

某校在高三年级上学期期末考试数学成绩中抽取n个数学成绩进行分析,全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组[120,130],下表是按上述分组方法得到的频率分布表:
分 组 频 数 频 率
[80,90) x 0.04
[90,100) 9 y
[100,110) z 0.38
[110,120) 17 0.34
[120,130] 3 0.06
(1)求n及分布表中x,y,z的值;
(2)校长决定从第一组和第五组的学生中随机抽取2名进行交流,求第一组至少有一人被抽到的概率.
(3)设从第一组或第五组中任意抽取的两名学生的数学测试成绩分别记为m,n,求事件“|m-n|>10”的概率.

查看答案和解析>>


同步练习册答案