1.(理)已知是实数.i是虚数单位.则m+ni等于 A.1+2i B.1-2i C.2+i D.2-i(文)已知的值是 A. B. C. D.- 查看更多

 

题目列表(包括答案和解析)

已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=
.
z0
.
z
,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式;
(Ⅱ)将(x、y)作为点P的坐标,(x'、y')作为点Q的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q,当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;
(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

查看答案和解析>>

22.已知复数z0=l-mi(m>0),z=x+yi和w=x′+y′i.其中xyx′,y′均为实数.i为虚数单位,且对于任意复数z,有w=·.

(1)试求m的值,并分别写出x′和y′用x、y表示的关系式;

(2)将(x,y)作为点P的坐标,(x′,y′)作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.

当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程.

(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在c 该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

查看答案和解析>>

(2000•上海)已知复数z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均为实数,i为虚数单位,且对于任意复数z,有w=
.
z0
.
z
,|w|=2|z|.
(Ⅰ)试求m的值,并分别写出x'和y'用x、y表示的关系式;
(Ⅱ)将(x、y)作为点P的坐标,(x'、y')作为点Q的坐标,上述关系可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q,当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;
(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

查看答案和解析>>

(09年丰台区二模理)已知,其中i是虚数单位,那么实数a等于  (    )

       A.3                        B.                    C.-3                       D.-

查看答案和解析>>

已知复数z0=1miM0),z=xyiω=xyi,其中xyxy均为实数,i为虚数单位,且对于任意复数z,有ω=·|ω|=2|z|

)试求m的值,并分别写出xyxy表示的关系式;

)将(xy)作为点P的坐标,(xy)作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.

当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;

)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

查看答案和解析>>

 

一、

C(B文)  CBAA  CBBA (D文)   B BD

二、

13.    14.-15    15.    16.②③④

三、

17.解:(1)由

得B=2C或2C=

B+C>不合题意。

由2C=-B知2C=A+C

ABC为等腰三角形

(2)

18.解:(1)由

(2)

19.解:(1)密码中同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2 列分别总是1,2

(2)

2

3

4

P

(文)解:(1)当且仅当时方程组只有一组解,所以方程组只有一组解的概率

(2)因为方程组只有正数解,所以两直线的交点一定在第一象限,

所以

解得(a,b)可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2,),(6,1),(6,2)

所以

20.(1)

(2)过B作DE的平行线GB交A1A于G,

  

21.解:(1)   ①

过原点垂直于I的直线方程    ②

解得①②得

因椭圆中心0(0,0)关于I的对称点在椭圆C的右准线上,

所以

又因为I过椭圆的焦点,所以焦点坐标为(2,0),

所以

故椭圆方程为

(2)当直线m的斜率存在时,得m的方程为代入椭圆方程得

点0到m的距离

由得

解得

当m的斜率不存在时,

m的方程为x=-2,也有

且满足

故直线m的方程为

(文))(1)

(2)当m=0时,;

当m>0时,

当m<0时,

22.解:(1)当m=0时,当t<0时,x=0

当  当

(2)因为是偶函数,

所以只要求在[0,1]上的最大值即可,又

①当上为增函数,

所以

②当

上为减函数,

所以

解得 

所以当

(3)

(文)解:(1)   ①

过原点垂直于I的直线方程为   ②

解①②得

因为椭圆中心0(0,0)关于I的对称点在椭圆C的右准线上,

所以

又因为I过椭圆的焦点,所以焦点坐标为(2,0),

所以

故椭圆方程为

(2)当直线m的斜率存在时,得m的方程为代入椭圆方程得

点0到m的距离

由得

解得

当m的斜率不存在时,

m的方程为x=-2,也有

且满足

故直线m的方程为

 

 


同步练习册答案