(1)求证:面面, A C 查看更多

 

题目列表(包括答案和解析)

设A(x1,y1),B(x2,y2)是椭圆
x2
b2
+
y2
a2
=1
,(a>b>0)上的两点,已知向量
m
=(
x1
b
y1
a
),
n
=(
x2
b
y2
a
),且
m
n
=0
,若椭圆的离心率e=
3
2
,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

19、下面(A),(B),(C),(D)为四个平面图形:
交点数 边数 区域数
(A) 4 5 2
(B)  5 8
(C) 12 5
(D) 15
(1)数出每个平面图形的交点数、边数、区域数,并将相应结果填入表格;
(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为E,F,G,试猜想E,F,G之间的等量关系(不要求证明);
(3)现已知某个平面图形有2010个交点,且围成2010个区域,试根据以上关系确定该平面图形的边数.

查看答案和解析>>

平面内动点P到点F(1,0)的距离等于它到直线x=-1的距离,记点P的轨迹为曲线Γ.
(1)求曲线Γ的方程;
(2)若点ABCΓ上的不同三点,且满足=0,证明:△ABC不可能为直角三角形.

查看答案和解析>>

A(x1y1),B(x2y2)是椭圆C=1(a>b>0)上两点,已知mn,若m·n=0且椭圆的离心率e,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

平面内动点P到点F(10)的距离等于它到直线x=-1的距离,记点P的轨迹为曲线Γ.

(1)求曲线Γ的方程;

(2)若点ABCΓ上的不同三点,且满足0,证明:ABC不可能为直角三角形.

 

查看答案和解析>>


同步练习册答案