已知(1)若的图象有与轴平行的切线.求的取值范围,(2)若在时取得极值.且.恒成立.求的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分) 已知函数

(1)若函数的图象在公共点P处有相同的切线,求实数的值并求点P的坐标;(2)若函数的图象有两个不同的交点M、N,求的取值范围;(3)在(Ⅱ)的条件下,过线段MN的中点作轴的垂线分别与的图像和的图像交S、T点,以S为切点作的切线,以T为切点作的切线.是否存在实数使得,如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

(本小题满分14分)

     已知数列的前项和为,对一切正整数,点都在函数的图象上,且在点处的切线的斜率为.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,求数列的前项和

(Ⅲ)设,等差数列的任一项,其中中最小的数,,求数列的通项公式.

查看答案和解析>>

.(本小题满分14分)已知函数.(1) 试证函数的图象关于点对称;(2) 若数列的通项公式为, 求数列的前m项和(3) 设数列满足: , . 设.

若(2)中的满足对任意不小于2的正整数n, 恒成立, 试求m的最大值.

查看答案和解析>>

(本小题满分14分) 已知函数图象上一点处的切线方程为.(Ⅰ)求的值;(Ⅱ)若方程内有两个不等实根,求的取值范围(其中为自然对数的底数);(Ⅲ)令,若的图象与轴交于(其中),的中点为,求证:处的导数

查看答案和解析>>

(本小题满分14分)已知函数满足(其中在点处的导数,为常数).(1)求函数的单调区间;(2)若方程有且只有两个不等的实数根,求常数;(3)在(2)的条件下,若,求函数的图象与轴围成的封闭图形的面积.

查看答案和解析>>

 

一、选择题(本大题共8小题,每小题5分,满分40分.)

题号

1

2

3

4

5

6

7

8

选项

C

A

C

B

D

B

B

A

二、填空题(共7小题,计30分。其中第9、10、11、12小题必做;第13、14、15题选做两题,若3题全做,按前两题得分计算。)

9、 4       10、__10__(用数字作答).11、____。12、___0___。

13、      ;14、___8_____.15、   3  

 

三、解答题(考生若有不同解法,请酌情给分!)

16.解:(1)…………2分

……………………………………3分

………………………………………………5分

(2)…………………………7分

…………………………………9分

………………………………………10分

∴当………………………………12分

 

17.解:⑴、记甲、乙两人同时参加岗位服务为事件,那么,即甲、乙两人同时参加岗位服务的概率是.……………………4分

⑵、记甲、乙两人同时参加同一岗位服务为事件,

那么,…………………………………………………………6分

所以,甲、乙两人不在同一岗位服务的概率是.………8分

⑶、随机变量可能取的值为1,2.事件“”是指有两人同时参加岗位服务,则

.所以,

的分布列是:…………………………………………………………………… 10分

1

2

    ∴…………………………………………………………12分

 

18.

解:设2008年末汽车保有量为a1万辆,以后各年末汽车保有量依次为a2万辆,a3万辆,…,每年新增汽车x万辆。………………………………………………………………1分

a1=30,a2=a1×0.94+x,a3=a2×0.94+x=a1×0.942+x×0.94+x,…

故an=a1×0.94n-1+x(1+0.94+…+0.94n-2

.………………………………………………6分

(1):当x=3万辆时,an≤30

 则每年新增汽车数量控制在3万辆时,汽车保有量能达到要求。……………9分

  (2):如果要求汽车保有量不超过60万辆,即an≤60(n=1,2,3,…)

则,

即.

对于任意正整数n,

因此,如果要求汽车保有量不超过60万辆,x≤3.6(万辆).………………13分

答:若每年新增汽车数量控制在3万辆时,汽车保有量能达到要求;每年新增汽车不应超过3.6万辆,则汽车保有量定能达到要求。………………………………………14分

 

19.解:(1)…………………………………………………………2分

由己知有实数解,∴,故…………………5分

(2)由题意是方程的一个根,设另一根为

则,∴……………………………………………………7分

∴,

当时,;当时,;

当时,

∴当时,有极大值,又,,

即当时,的量大值为  ………………………10分

∵对时,恒成立,∴,

∴或………………………………………………………………13分

故的取值范围是  ………………………………………14分

20.解:(1)作MP∥AB交BC于点P,NQ∥AB交BE于点Q,连结PQ,依题意可得MP∥NQ,且MP=NQ,即MNQP是平行四边形,

∴MN=PQ.由已知,CM=BN=a,CB=AB=BE=1,

∴AC=BF=,  .

即CP=BQ=.

∴MN=PQ=

(0<a<).…………………………………5分

(2)由(Ⅰ),MN=,所以,当a=时,MN=.

即M、N分别移动到AC、BF的中点时,MN的长最小,最小值为.………8分

(3)取MN的中点G,连结AG、BG,∵AM=AN,BM=BN,G为MN的中点

∴AG⊥MN,BG⊥MN,∠AGB即为二面角α的平面角,………………………11分

又AG=BG=,所以,由余弦定理有cosα=.

故所求二面角的余弦值为-.………………………………………………………14分

(注:本题也可用空间向量,解答过程略)

21.解:⑴、对任意的正数均有且.

,…………………………………………………4分

又是定义在上的单增函数,.

当时,,.,.

当时,,

.,

为等差数列,,. ……………………………6分

⑵、假设存在满足条件,即

对一切恒成立.

令,

,………………………10分

故,………………………12分

,单调递增,,.

.……………………………………………………………14分

 

(考生若有不同解法,请酌情给分!)

 

 

 

 

 


同步练习册答案