(1)求函数的解析式, (2)求数列的通项公式, 查看更多

 

题目列表(包括答案和解析)

精英家教网函数y=f(x)是定义在R上的偶函数,且f(-1+x)=f(-1-x),当x∈[-2,-1]时,f(x)=t(x+2)3-t(x+2)(t∈R),记函数y=f(x)的图象在(
1
2
,f(
1
2
))处的切线为l,f′(
1
2
)=1.
(Ⅰ)求y=f(x)在[0,1]上的解析式;
(Ⅱ)点列B1(b1,2),B2(b2,3),…,Bn(bn,n+1)在l上,A1(x1,0),A2(x2,0),…,An(xn,0)依次为x轴上的点,如图,当n∈N*时,点An,Bn,An+1构成以AnAn+1为底边的等腰三角形.若x1=a(0<a<1),求数列{xn}的通项公式;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数a使得数列{xn}是等差数列?如果存在,写出a的一个值;如果不存在,请说明理由.

查看答案和解析>>

(12分)函数是一次函数,且,其中自然对数的底。

(1)求函数的解析式,

(2)在数列中,,求数列的通项公式;

(3)若数列满足,试求数列的前项和

查看答案和解析>>

设函数f(x)=
ax2+bx+1
x+c
(a>0)
为奇函数,且|f(x)|min=2
2
,数列{an}与{bn}满足如下关系:a1=2,an+1=
f(an)-an
2
bn=
an-1
an+1
.

(1)求f(x)的解析式;
(2)求数列{bn}的通项公式bn
(3)记Sn为数列{an}的前n项和,求证:对任意的n∈N*Sn<n+
3
2
.

查看答案和解析>>

设函数f(x)满足2f(x)-f(
1
x
)=4x-
2
x
+1
,数列{an}和{bn}满足下列条件:a1=1,an+1-2an=f(n),bn=an+1-an,cn=an+2n+3.
(1)求f(x)的解析式;
(2)证明{cn}成等比数列,并求{bn}的通项公式bn

查看答案和解析>>

设函数f(x)=
x
ax+b
(a,b为常数,a≠0),若f(1)=
1
3
,且f(x)=x只有一个实数根.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若数列{an}满足关系式:an=f(an-1)(n∈N且n≥2),又a1=-
1
2005
,证明数列{
1
an
}是等差数列并求{an}的通项公式.

查看答案和解析>>


同步练习册答案