对.恒有.即∴ 即解得 查看更多

 

题目列表(包括答案和解析)

在数列中,,其中,对任意都有:;(1)求数列的第2项和第3项;

(2)求数列的通项公式,假设,试求数列的前项和

(3)若对一切恒成立,求的取值范围。

【解析】第一问中利用)同理得到

第二问中,由题意得到:

累加法得到

第三问中,利用恒成立,转化为最小值大于等于即可。得到范围。

(1)同理得到             ……2分 

(2)由题意得到:

 又

              ……5分

 ……8分

(3)

 

查看答案和解析>>

函数的定义域为,且满足对于任意,有

⑴求的值;

⑵判断的奇偶性并证明;

⑶如果,且上是增函数,求的取值范围.

【解析】(Ⅰ) 通过赋值法,,求出f(1)0;

(Ⅱ) 说明函数f(x)的奇偶性,通过令,得.令,得,推出对于任意的x∈R,恒有f(-x)=f(x),f(x)为偶函数.

(Ⅲ) 推出函数的周期,根据函数在[-2,2]的图象以及函数的周期性,即可求满足f(2x-1)≥12的实数x的集合.

 

查看答案和解析>>

先阅读下列不等式的证法,再解决后面的问题:

已知

证明:构造函数

因为对一切,恒有,所以从而得

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述问题的推广式.

(2)对推广的问题加以证明.

查看答案和解析>>

已知函数

(1)试求的值域;

(2)设,若对,恒 成立,试求实数的取值范围

【解析】第一问利用

第二问中若,则,即当时,,又由(Ⅰ)知

若对,恒有成立,即转化得到。

解:(1)函数可化为,  ……5分

 (2) 若,则,即当时,,又由(Ⅰ)知.        …………8分

若对,恒有成立,即

,即的取值范围是

 

查看答案和解析>>

,  

(1)当时,求曲线处的切线方程;

(2)如果存在,使得成立,求满足上述条件的最大整数

(3)如果对任意的,都有成立,求实数的取值范围.

【解析】(1)求出切点坐标和切线斜率,写出切线方程;(2)存在转化解决;(3)任意的,都有成立即恒成立,等价于恒成立

 

查看答案和解析>>


同步练习册答案