题目列表(包括答案和解析)
在数列中,,其中,对任意都有:;(1)求数列的第2项和第3项;
(2)求数列的通项公式,假设,试求数列的前项和;
(3)若对一切恒成立,求的取值范围。
【解析】第一问中利用)同理得到
第二问中,由题意得到:
累加法得到
第三问中,利用恒成立,转化为最小值大于等于即可。得到范围。
(1)同理得到 ……2分
(2)由题意得到:
又
……5分
……8分
(3)
函数的定义域为,且满足对于任意,有.
⑴求的值;
⑵判断的奇偶性并证明;
⑶如果≤,且在上是增函数,求的取值范围.
【解析】(Ⅰ) 通过赋值法,,求出f(1)0;
(Ⅱ) 说明函数f(x)的奇偶性,通过令,得.令,得,推出对于任意的x∈R,恒有f(-x)=f(x),f(x)为偶函数.
(Ⅲ) 推出函数的周期,根据函数在[-2,2]的图象以及函数的周期性,即可求满足f(2x-1)≥12的实数x的集合.
先阅读下列不等式的证法,再解决后面的问题:
已知
证明:构造函数
即
因为对一切,恒有,所以从而得
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述问题的推广式.
(2)对推广的问题加以证明.
已知函数.
(1)试求的值域;
(2)设,若对, ,恒 成立,试求实数的取值范围
【解析】第一问利用
第二问中若,则,即当时,,又由(Ⅰ)知
若对,,恒有成立,即转化得到。
解:(1)函数可化为, ……5分
(2) 若,则,即当时,,又由(Ⅰ)知. …………8分
若对,,恒有成立,即,
,即的取值范围是
设, .
(1)当时,求曲线在处的切线方程;
(2)如果存在,使得成立,求满足上述条件的最大整数;
(3)如果对任意的,都有成立,求实数的取值范围.
【解析】(1)求出切点坐标和切线斜率,写出切线方程;(2)存在,转化解决;(3)任意的,都有成立即恒成立,等价于恒成立
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com