如图1.△ABC的边BC在直线l上.AC⊥BC.且AC=BC,△EFP的边FP也在直线l上.边EF与边AC重合.且EF=FP.(1)在图1中.请你通过观察.测量.猜想并写出AB与AP所满足的数量关系和位置关系,(2)将△EFP沿直线l向左平移到图2的位置时.EP交AC于点Q.连结AP.BQ.猜想并写出BQ与AP所满足的数量关系和位置关系.请证明你的猜想,(3)将△EFP沿直线l向左平移到图3的位置时.EP的延长线交AC的延长线于点Q.连结AP.BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立.给出证明,若不成立.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。

1.(1)问:始终与△AGC相似的三角形有              

2.(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);

3.(3)问:当x为何值时,△AGH是等腰三角形?

 

查看答案和解析>>

.(本小题满分12分)

如图,AD为△ABC的中线,BE为△ABD的中线。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;

(2)在△BED中作BD边上的高;

(3)若△ABC的面积为40,BD=5,则△BDEBD边上的高为多少?

 

查看答案和解析>>

(本小题满分12分)

如图(1)在Rt△ACB中,∠C=90°AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1 cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ。若设运动的时间为t(s)(0<t<2).根据以上信息,解答下列问题:

(1)当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?

(2)设四边形PQCB的面积为y(),直接写出y与t之间的函数关系式;

(3)在点P、点Q的移动过程中,如果将△APQ沿其一边所在直线翻折,翻折后的三角形与△APQ组成一个四边形,那么是否存在某一时刻t,使组成的四边形为菱形?若存在,求出t的值;若不存在,请说明理由.

图(1)                 备用图                 备用图

 

查看答案和解析>>

(本小题满分12分)
如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。

【小题1】(1)问:始终与△AGC相似的三角形有              
【小题2】(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);
【小题3】(3)问:当x为何值时,△AGH是等腰三角形?

查看答案和解析>>

(本小题满分12分)
如图(1)在Rt△ACB中,∠C=90°AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1 cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ。若设运动的时间为t(s)(0<t<2).根据以上信息,解答下列问题:
(1)当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?
(2)设四边形PQCB的面积为y(),直接写出y与t之间的函数关系式;
(3)在点P、点Q的移动过程中,如果将△APQ沿其一边所在直线翻折,翻折后的三角形与△APQ组成一个四边形,那么是否存在某一时刻t,使组成的四边形为菱形?若存在,求出t的值;若不存在,请说明理由.

图(1)                 备用图                 备用图

查看答案和解析>>


同步练习册答案