大小为? 查看更多

 

题目列表(包括答案和解析)

小明在调查某班小学生每月的人均零花钱时,得到了下列一组数据:
精英家教网
小明选择了模型y=x
1
2
,他的同学却认为模型y=
2x
3
更合适.
(1)你认为谁选择的模型较好?并简单说明理由;
(2)试用你认为较好的数学模型来分析大约在几月份小学生的平均零花钱会超过100元?
(参考数据lg2=0.3010,lg3=0.4771)

查看答案和解析>>

为迎接山东省第23届运动会在济宁召开,济宁市加快了城市建设改造的步伐.在太白路升级改造工程中,欲在京杭大运河上新建一座跨河大桥,最两端的两桥墩相距m米.经测算,一个桥墩的工程费用为256万元,距离为工米的相邻两桥墩之间的桥面工程费用为(2+x)x万元,假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记工程的总费用为:y万元.
(I )试写出y关于工的函数关系式;
(II)当m=320米时,需建多少个桥墩才能使得工程总费用y最小,最小费用为多少万元?

查看答案和解析>>

为了迎接2009年10月1日建国60周年,某城市为举办的大型庆典活动准备了四种保证安全的方案,列表如下:
精英家教网
其中安全系数表示实施此方案能保证安全的系数,每种方案相互独立,每种方案既可独立用,又可以与其它方案合用,合用时,至少有一种方案就能保证整个活动的安全.
(1)若总经费在1200万元内(含1200万元),如何组合实施方案可以使安全系数最高?
(2)要保证安全系数不小于0.99,至少需要多少经费?

查看答案和解析>>

为了贯彻节能减排的理念,国家制定了家电能耗的节能标准.以某品牌的节能型冰箱为例,该节能型冰箱使用一天(24小时)耗电仅0.81度,比普通冰箱约节省电能50%,达到国家一级标准.经测算,每消耗100度电相当于向大气层排放78.5千克二氧化碳,而一棵大树在60年的生命周期内共可以吸收1吨二氧化碳.
(1)一台节能型冰箱在一个月(按30天不间断使用计算)中比普通冰箱相当于少向大气层排放多少千克的二氧化碳(精确到0.1千克)?
(2)某小城市数千户居民现使用的都是普通冰箱.在“家电下乡”补贴政策支持下,若每月月初都有150户居民“以旧换新”换购节能型冰箱,那么至少多少个月后(每月按30天不间断使用计算),该市所有新增的节能型冰箱少排放的二氧化碳的量可超过150棵大树在60年生命周期内共吸收的二氧化碳的量?

查看答案和解析>>

小明家决定投资21000元在自家房屋旁建 一个形状为长方体的车库,高度恒定.车库的一个侧面利用已有的旧墙不花钱,正面用铁栅栏,每米造价500元,另一侧面与后面用砖砌墙,每米造价400元,顶部每平方米造价600元.请你帮小明家算一算:
(Ⅰ) 车库底面积S的最大允许值是多少?
(Ⅱ)为使S达到最大,而实际投资又不超过预算,那么正面应设计多少米?

查看答案和解析>>

 

说明:

    一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.

    二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

    三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.

    四、只给整数分数,选择题和填空题不给中间分.

一、选择题:本题考查基本知识和基本运算,每小题5分,满分50分.

1. B   2. C    3. B   4.C   5.D    6.A   7. B   8. A    9. C   10. C

二、填空题:本题考查基本知识和基本运算,每小题4分,满分20分.

11. 1       12. 6ec8aac122bd4f6e     13. 2       14. 6ec8aac122bd4f6e        15. ①③

三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.

16. 本题主要考查三角函数的倍角公式、两角和公式等基本知识,考查学生的运算求解能

力. 满分13分.

解:(Ⅰ)因为6ec8aac122bd4f6e

         两边同时平方得

     6ec8aac122bd4f6e.                      ………………………………………(4分)

     又6ec8aac122bd4f6e

     所以6ec8aac122bd4f6e.              ………………………………………(6分)

       (Ⅱ)因为6ec8aac122bd4f6e6ec8aac122bd4f6e

             所以6ec8aac122bd4f6e,得6ec8aac122bd4f6e.

             又6ec8aac122bd4f6e,知6ec8aac122bd4f6e.             …………………(9分)

            6ec8aac122bd4f6e

                  6ec8aac122bd4f6e

                  6ec8aac122bd4f6e.              ………………………………………(13分)

6ec8aac122bd4f6e17. 本题主要考查线线位置关系,二面角的求法等基本知识,考查空间想像能力,运算求解能力和推理论证能力. 满分13分.

解:(Ⅰ)证明:连结6ec8aac122bd4f6e

6ec8aac122bd4f6e侧棱6ec8aac122bd4f6e底面ABC,

6ec8aac122bd4f6e,又6ec8aac122bd4f6e.

6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e平面6ec8aac122bd4f6e

6ec8aac122bd4f6e .                    ………(3分)

6ec8aac122bd4f6e

6ec8aac122bd4f6e四边形6ec8aac122bd4f6e为正方形,

6ec8aac122bd4f6e.

6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e .

6ec8aac122bd4f6e平面6ec8aac122bd4f6e6ec8aac122bd4f6e.         …………(6分)

(Ⅱ)6ec8aac122bd4f6e6ec8aac122bd4f6e.

6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e.

6ec8aac122bd4f6e6ec8aac122bd4f6e.

如图,以6ec8aac122bd4f6e为原点,建立空间直角坐标系6ec8aac122bd4f6e-xyz,设AP=x,则

6ec8aac122bd4f6e                6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e.

              知面6ec8aac122bd4f6e的一个法向量为6ec8aac122bd4f6e,           ……(9分)

设面6ec8aac122bd4f6e的一个法向量为6ec8aac122bd4f6e

              6ec8aac122bd4f6e ,6ec8aac122bd4f6e6ec8aac122bd4f6e .

             由6ec8aac122bd4f6e   得6ec8aac122bd4f6e

             令6ec8aac122bd4f6e6ec8aac122bd4f6e           ………(11分)

               依题意:6ec8aac122bd4f6e=6ec8aac122bd4f6e

               解得6ec8aac122bd4f6e(不合题意,舍去),6ec8aac122bd4f6e

              6ec8aac122bd4f6e时,二面角6ec8aac122bd4f6e的大小为6ec8aac122bd4f6e.   …………(13分)

18.本题主要考查数列与不等式等基本知识,考查运用数学知识分析问题与解决问题的能力,

考查应用意识. 满分13分.

    解:设第一年(今年)的汽车总量为6ec8aac122bd4f6e,第n年的汽车总量为6ec8aac122bd4f6e,则

        6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e.

数列6ec8aac122bd4f6e构成的首项为80000,公差为2000的等差数列,

        6ec8aac122bd4f6e.   ………………………(4分)

若洗车行A从今年开始经过n年可以收回购买净化设备的成本. 则(6ec8aac122bd4f6e6ec8aac122bd4f6e-20000n≥900000,………………………(8分)

        整理得,6ec8aac122bd4f6e

        6ec8aac122bd4f6e

        因为6ec8aac122bd4f6e,所以 6ec8aac122bd4f6e.

答:至少要经过6年才能收回成本. …………………………………………(13分)

19.本题主要考查直线与抛物线的位置关系、等比数列求和等基本知识,考查运算求解能力和分析问题、解决问题的能力. 满分13分

解:(Ⅰ)依题意得:6ec8aac122bd4f6e,解得6ec8aac122bd4f6e.

所以抛物线方程为6ec8aac122bd4f6e . ………………………………………………(3分)

(Ⅱ)若6ec8aac122bd4f6e,即直线AB垂直于x轴,不防设6ec8aac122bd4f6e

             由6ec8aac122bd4f6e又由抛物线对称性可得:6ec8aac122bd4f6e.

   又6ec8aac122bd4f6e,得 6ec8aac122bd4f6e ,故S△ABD=6ec8aac122bd4f6e.   …………………………(4分)

6ec8aac122bd4f6e,设直线AB方程:6ec8aac122bd4f6e

由方程组6ec8aac122bd4f6e消去6ec8aac122bd4f6e得:6ec8aac122bd4f6e.(※)

依题意可知:6ec8aac122bd4f6e.

由已知得6ec8aac122bd4f6e6ec8aac122bd4f6e.  ……………………………………(5分)

6ec8aac122bd4f6e,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,整理得6ec8aac122bd4f6e.

所以6ec8aac122bd4f6e .     …………………………………………(6分)

6ec8aac122bd4f6e中点6ec8aac122bd4f6e

所以点6ec8aac122bd4f6e

依题意知6ec8aac122bd4f6e.  

又因为方程(※)中判别式6ec8aac122bd4f6e,得6ec8aac122bd4f6e.

所以6ec8aac122bd4f6e ,又6ec8aac122bd4f6e

所以6ec8aac122bd4f6e

6ec8aac122bd4f6e为常数,故6ec8aac122bd4f6e的面积为定值.  …………………………………(9分)

(Ⅲ)依题意得:6ec8aac122bd4f6e6ec8aac122bd4f6e…,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e <6ec8aac122bd4f6e.       ………………………………(13分)

  注:本题第(Ⅱ)问另解,参照本标准给分;第(Ⅲ)问若用定积分证明,同样给分.

20. 本题主要考查函数的单调性、极值、最值、不等式等基本知识,考查运用导数研究函数

性质的方法,考查分类与整合及化归与转化等数学思想. 满分14分.

解:(Ⅰ)依题意,知6ec8aac122bd4f6e的定义域为6ec8aac122bd4f6e.

6ec8aac122bd4f6e时,6ec8aac122bd4f6e6ec8aac122bd4f6e.

6ec8aac122bd4f6e,解得6ec8aac122bd4f6e.

6ec8aac122bd4f6e时,6ec8aac122bd4f6e;当6ec8aac122bd4f6e时,6ec8aac122bd4f6e .

6ec8aac122bd4f6e

所以6ec8aac122bd4f6e的极小值为6ec8aac122bd4f6e,无极大值 . …………………………(3分)

(Ⅱ)6ec8aac122bd4f6e

6ec8aac122bd4f6e .  

6ec8aac122bd4f6e,解得6ec8aac122bd4f6e.     …………………………(4分)

6ec8aac122bd4f6e,令6ec8aac122bd4f6e,得6ec8aac122bd4f6e;令6ec8aac122bd4f6e,得6ec8aac122bd4f6e

6ec8aac122bd4f6e

①当6ec8aac122bd4f6e时,6ec8aac122bd4f6e

6ec8aac122bd4f6e,得6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e,得6ec8aac122bd4f6e.

②当6ec8aac122bd4f6e时,6ec8aac122bd4f6e.

③当6ec8aac122bd4f6e时,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,得6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e,得6ec8aac122bd4f6e.

综上所述,当6ec8aac122bd4f6e时,6ec8aac122bd4f6e的递减区间为6ec8aac122bd4f6e,递增区间为6ec8aac122bd4f6e. 

6ec8aac122bd4f6e时,6ec8aac122bd4f6e的递减区间为6ec8aac122bd4f6e;递增区间为6ec8aac122bd4f6e.

6ec8aac122bd4f6e时,6ec8aac122bd4f6e递减区间为6ec8aac122bd4f6e.当6ec8aac122bd4f6e时,6ec8aac122bd4f6e的递减区间为6ec8aac122bd4f6e,递增区间为6ec8aac122bd4f6e.  …………………………(9分)

(Ⅲ)当6ec8aac122bd4f6e时,6ec8aac122bd4f6e

6ec8aac122bd4f6e,知6ec8aac122bd4f6e时,6ec8aac122bd4f6e . 6ec8aac122bd4f6e6ec8aac122bd4f6e .

依题意得:6ec8aac122bd4f6e 对一切正整数成立.  ……………(11分)

6ec8aac122bd4f6e ,则6ec8aac122bd4f6e(当且仅当6ec8aac122bd4f6e时取等号).

6ec8aac122bd4f6e在区间6ec8aac122bd4f6e单调递增,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,又6ec8aac122bd4f6e为正整数,得6ec8aac122bd4f6e

6ec8aac122bd4f6e时,存在6ec8aac122bd4f6e6ec8aac122bd4f6e

对所有6ec8aac122bd4f6e满足条件.

所以,正整数6ec8aac122bd4f6e的最大值为32.     …………………………………(14分)

21. (1)本题主要考查矩阵乘法与变换等基本知识,考查运算求解能力,考查函数与方程思

         想. 满分7分.

         解:PQ=6ec8aac122bd4f6e

             PQ矩阵表示的变换T:6ec8aac122bd4f6e满足条件

            6ec8aac122bd4f6e.

          所以6ec8aac122bd4f6e               ………………………(3分)

           直线6ec8aac122bd4f6e任取点6ec8aac122bd4f6e,则点6ec8aac122bd4f6e在直线6ec8aac122bd4f6e上,

           故6ec8aac122bd4f6e,又6ec8aac122bd4f6e,得6ec8aac122bd4f6e

           所以6ec8aac122bd4f6e               ………………………………………(7分)

  

(2)本题主要考查直线极坐标方程和椭圆参数方程等基本知识,考查运算求解能力,考查化归与转化思想. 满分7分.

        解:由题意知直线和椭圆方程可化为:

            6ec8aac122bd4f6e,               ①

            6ec8aac122bd4f6e.                ②       …………………………(2分)

①②联立,消去6ec8aac122bd4f6e得:6ec8aac122bd4f6e,解得6ec8aac122bd4f6e6ec8aac122bd4f6e

设直线与椭圆交于A、B两点,则

6ec8aac122bd4f6e

         6ec8aac122bd4f6e

故所求的弦长为6ec8aac122bd4f6e.          &n


同步练习册答案