中心在原点.焦点在轴上的一椭圆与一双曲线有共同的焦点..且.椭圆的长半轴长与双曲线的实半轴长之差为4.离心率之比为3:7.(1)求两曲线的方程, 查看更多

 

题目列表(包括答案和解析)

 中心在原点,焦点在轴上的一椭圆和双曲线有共同的焦点,椭圆的长半轴和双曲线的实半轴之差为4,离心率之比为.求这两曲线的方程.

 

 

 

 

查看答案和解析>>

已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点,过点P(2,1)的直线与椭圆C在第一象限相切于点M .

   (1)求椭圆C的方程;

   (2)求直线的方程以及点M的坐标;

   (3) 是否存过点P的直线与椭圆C相交于不同的两点A、B,满足?若存在,求出直线l1的方程;若不存在,请说明理由.

 

 

查看答案和解析>>

已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点构成的三角形中面积的最大值为.
(1)求椭圆的标准方程;
(2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时不重合,连接与椭圆的另一交点记为,求的取值范围.

查看答案和解析>>

已知中心在原点,焦点在轴上的椭圆的离心率为,点是椭圆上的一点,且点 到椭圆两焦点的距离之和为

(1)求椭圆的方程;

(2)过点,倾斜角为的直线与上述椭圆交于两点,求

  

查看答案和解析>>

已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点构成的三角形中面积的最大值为.
(1)求椭圆的标准方程;
(2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时不重合,连接与椭圆的另一交点记为,求的取值范围.

查看答案和解析>>

一、

1.B       2.A      3.D      4.D      5.C      6.B       7.A      8.C      9.D      10.A

11.A    12.B

1.由题意知,解得,故选B.

2.原不等式即为,化得,解得.故选A.

3.由条件.对上,所以

,所以.故选D.

4.设的角为的斜率的斜率

,于是.故选D.

5.由解得,即其反函数为,又在原函数中由,即其反函数中.故选C.

6.不等式组化得 

       平面区域如图所示,阴影部分面积:

       ,故选B.

      

7.由已知得,而

       .故选A.

8..故选c.

9.令,则,即的图象关于(0,0)点对称,将的图象向下平移6个单位.得题中函数的图象,则它的对称中心为(0,).故选D.

10..故选A.

11.由条件得:,则,所以.故选A.

12.由已知正三棱柱的高为球的直径,底面正三角形的内切圆是球的大圆.设底面正三角形的边长为,球半径为,则,又,解得,则,于是.故选B.

二、

13.平行,,解得

       即

14.设数列的公比为,则

       ,两式相除,得,则

       所以

15.由题意知,直线是抛物线的准线,而的距离等于到焦点的距离.即求点到点的距离与到点的距离和的最小值,就是点与点的距离,为

16.一方面.由条件,,得,故②正确.

另一方面,如图,在正方体中,把分别记作,平面、平面、平面分别记作,就可以否定①与③.

三、

17.解:,且

       ,即

       又

       由正弦定理

       又

      

      

       即的取值范围是区间

18.解:(1)设甲、乙两人通过测试的事件分别为,则

              相互独立,∴甲、乙两人中只有1人通过测试的概率

             

(2)甲答对题数的所有可能值为

      

      

    ∴甲答对题数的数学期望为

19.解:(1)由已知,∴数列的公比,首项

             

             

              又数列中,

              的公差,首项

             

             

             

             

              时也成立)

           ∴数列的通项公式依次为

       (2)记

              当时,都是增函数

              即时,是增函数

              4时,

              又

              ,∴不存在,使

20.(1)证明;在直三棱柱中,

             

              又

             

              ,而

           ∴平面平面

(2)解:取中点,连接于点,则

与平面所成角的大小等于与平面所成角的大小,取中点,连接,则等腰三角形中,

又由(1)得

为直线与面所成的角

∴直线与平面所成的角为

(注:本题也可以能过建立空间直角坐标系解答)

21.解:(1)设椭圆方程为,双曲线方程为

              ,半焦距

              由已知得,解得,则

              故椭圆及双曲线方程分别为

       (2)由向量的数量积公式知,表示向量夹角的余弦值,设,即求的值.

              由余弦定理得              ①

由椭圆定义得                       ②

由双曲线定义得                     ③

式②+式③得,式②一式③

将它们代人式①得,解得

所以

22,解:(1)由

要使在(0,1]上恒为单调函数,只需在(0,1]上恒成立.

∴只需在(0,1]上恒成立

              记

             

       (2)

           ∴由

       

        化简得

        时有,即

        则                     ①

              构造函数,则

              处取得极大值,也是最大值.

范围内恒成立,而

从而范围内恒成立.

∴在时,

时,,∴当时,恒成立

时,总有                                       ②

由式①和式②可知,实数的取值范围是

 

 

 


同步练习册答案