设二面角D-A1C-A的大小为.则. 查看更多

 

题目列表(包括答案和解析)

四面体ABCD满足AB=CD,BC=DA,AC=BD.设二面角D-AB-Cα,二面角DBCAβ,二面角D-AC-Bγ,则cosα+cosβ+cosγ=__________.

查看答案和解析>>

精英家教网如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;(Ⅱ)求二面角D-A1C-A的余弦值.
(文科)如图甲,精英家教网在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(Ⅰ)求证:DC⊥平面ABC;
(Ⅱ)设CD=a,求三棱锥A-BFE的体积.

查看答案和解析>>

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;(Ⅱ)求二面角D-A1C-A的余弦值.
(文科)如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(Ⅰ)求证:DC⊥平面ABC;
(Ⅱ)设CD=a,求三棱锥A-BFE的体积.

查看答案和解析>>

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;(Ⅱ)求二面角D-A1C-A的余弦值.







(文科)如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(Ⅰ)求证:DC⊥平面ABC;
(Ⅱ)设CD=a,求三棱锥A-BFE的体积.

查看答案和解析>>

精英家教网如图1,在平面内,ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.将两个正方形分别沿AD,CD折起,使D′′与D′重合于点D1.设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).
(Ⅰ) 设二面角E-AC-D1的大小为θ,若
π
4
≤θ≤
π
3
,求线段BE长的取值范围;
(Ⅱ)在线段D1E上存在点P,使平面PA1C1∥平面EAC,求
D1P
PE
与BE之间满足的关系式,并证明:当0<BE<a时,恒有
D1P
PE
<1.

查看答案和解析>>


同步练习册答案