题目列表(包括答案和解析)
设,求下列各式的值:
(Ⅰ) ; (Ⅱ); (Ⅲ).
【解析】本试题主要考查了二项式定理的运用。第一问中利用赋值的思想,令x=0,得到
第二问中,利用令x=1,得到
第三问中,利用令x=1/2,得到
解:(1)令x=0,得到;
(2)令x=1,得到
(3)令x=1/2,得到
定义,
(1)令函数的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O作曲线C1的切线,切点为B(n,t)(n>0),设曲线C1在点A、B之间的曲线段与线段OA、OB所围成图形的面积为S,求S的值。
(2)当
(3)令函数的图象为曲线C2,若存在实数b使得曲线C2在处有斜率为-8的切线,求实数a的取值范围。
已知点集,其中,,点列在L中,为L与y轴的交点,等差数列的公差为1,。
(1)求数列的通项公式;
(2)若=,令;试用解析式写出关于的函数。
(3)若=,给定常数m(),是否存在,使得 ,若存在,求出的值;若不存在,请说明理由。
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.
【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力 第一问要利用相似比得到结论。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)
第二问,
当且仅当
(3)令
∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.
∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com