由(1)知.令时.或. 查看更多

 

题目列表(包括答案和解析)

(1)  则     (4分)

 (2)由(1)知,则

 ①当时,,令

上的值域为                              (7分)

② 当时,      a.若,则                         

b.若,则上是单调减的

  上的值域为                          

c.若上是单调增的

  上的值域为                         (9分)

综上所述,当时,的值域为                     

  当时,的值域为                  (10分)         

时,若时,的值域为

时,的值域为 (12分)

即  当时,的值域为

时,的值域为

时,的值域为 

 

查看答案和解析>>

(1)  则     (4分)

 (2)由(1)知,则

 ①当时,,令

上的值域为                              (7分)

② 当时,      a.若,则                         

b.若,则上是单调减的

  上的值域为                          

c.若上是单调增的

  上的值域为                         (9分)

综上所述,当时,的值域为                     

  当时,的值域为                  (10分)         

时,若时,的值域为

时,的值域为 (12分)

即  当时,的值域为

时,的值域为

时,的值域为 

 

查看答案和解析>>

(1)  则     (4分)

 (2)由(1)知,则

 ①当时,,令

上的值域为                              (7分)

② 当时,      a.若,则                         

b.若,则上是单调减的

  上的值域为                          

c.若上是单调增的

  上的值域为                         (9分)

综上所述,当时,的值域为                     

  当时,的值域为                  (10分)         

时,若时,的值域为

时,的值域为 (12分)

即  当时,的值域为

时,的值域为

时,的值域为 

 

查看答案和解析>>

在△ABC中,a,b,c为三角形的三边,
(1)我们知道,△ABC为直角三角形的充要条件是存在一条边的平方等于另两边的平方和.类似地,试用三边的关系分别给出△ABC为锐角三角形的充要条件以及△ABC为钝角三角形的充要条件;(不需证明)
(2)由(1)知,若a2+b2=c2,则△ABC为直角三角形.试探究当三边a,b,c满足an+bn=cn(n∈N,n>2)时三角形的形状,并加以证明.

查看答案和解析>>

设函数f(x)=在[1,+∞上为增函数.  

(1)求正实数a的取值范围;

(2)比较的大小,说明理由;

(3)求证:(n∈N*, n≥2)

【解析】第一问中,利用

解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立

∴ax-1≥0对x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上为增函数,

∴n≥2时:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>


同步练习册答案