[解答提示] 解法一:由于周长一定的三角形的面积以正三角形面积最大.若允许折断木棒.则周长为的三角形面积的最大值是.由于.故排除C,D.又当三角形三边分别为时.其面积为.故选B. 查看更多

 

题目列表(包括答案和解析)

阅读下面学习材料:
已知多项式2x3-x2+m有一个因式是2x+1,求m的值.
解法一:设2x3-x2+m=(2x+1)(x2+ax+b),
则2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得:
2a+1=-1
a+2b=0
b=m
,解得
a=-1
b=0.5
m=0.5
,所以m=0.5
解法二:设2x3-x2+m=A(2x+1)(A为整式).由于上式为恒等式,为了方便计算,取x=-0.5,
得2×(-0.5)3-0.52+m=0,解得m=0.5
根据上面学习材料,解答下面问题:
已知多项式x4+mx3+nx-16有因式x-1和x-2,试用两种方法求m、n的值.
解法1:
解法2:

查看答案和解析>>

先阅读第(1)题的解答过程,然后再解第(2)题.
(1)已知多项式2x3-x2+m有一个因式是2x+1,求m的值.
解法一:设2x3-x2+m=(2x+1)(x2+ax+b),
则:2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得
2a+1=-1
a+2b=0
b=m
,解得
a=-1
b=
1
2
m=
1
2
,∴m=
1
2

解法二:设2x3-x2+m=A•(2x+1)(A为整式)
由于上式为恒等式,为方便计算了取x=-
1
2

(-
1
2
)3-(-
1
2
)2+m
=0,故 m=
1
2

(2)已知x4+mx3+nx-16有因式(x-1)和(x-2),求m、n的值.

查看答案和解析>>

阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=
3
2
,b=
3
2
.a=b=
3
2
,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=
m
2
+t,y=
m
2
-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

决心试一试,请阅读下列材料:
计算:(-
1
30
)÷(
2
3
-
1
10
+
1
6
-
2
5
)

解法一:原式=(-
1
30
2
3
-(-
1
30
1
10
+(-
1
30
1
6
-
1
30
÷(-
2
5
)

=-
1
20
+
1
3
-
1
5
+
1
12

=
1
6

解法二:原式=(-
1
30
)÷[(
2
3
+
1
6
)-(
1
10
+
2
5
)
]
=(-
1
30
)÷(
5
6
-
1
2
)

=-
1
30
×3

=-
1
10

解法三:原式的倒数为(
2
3
-
1
10
+
1
6
-
2
5
)÷(-
1
30
)=(
2
3
-
1
10
+
1
6
-
2
5
)×(-30)

=-20+3-5+12
=-10
故原式=-
1
10

上述得出的结果不同,肯定有错误的解法,你认为解法
 
是错误的,
在正确的解法中,你认为解法
 
最简捷.(4分)
然后请解答下列问题(6分)
计算:(-
1
42
)÷(
1
6
-
3
14
+
2
3
-
2
7
)

查看答案和解析>>

阅读下面的解题过程:
化简:
4+2
3
+
4-2
3

解法一:原式=
3+2
3
+1
+
3-2
3
+1
=
(
3
)
2
+2
3
+1
+
(
3
)
2
-2
3
+1
=
(
3
+1)
2
+
(
3
-1)
2
=
3
+1+
3
-1
=2
3

解法二:设x=
4+2
3
+
4-2
3
,则x>0.
所以x2=4+2
3
+2
4+2
3
4-2
3
+4-2
3
=8+2
16-12
=8+4=12.
所以x=2
3
.即原式=2
3

请你用上面给出的方法(任选一种)解答下面的问题:
化简:
2+
3
+
2-
3

查看答案和解析>>


同步练习册答案