题目列表(包括答案和解析)
【解析】如图:|OB|=b,|O F1|=c.∴kPQ=,kMN=﹣.
直线PQ为:y=(x+c),两条渐近线为:y=x.由,得:Q(,);由,得:P(,).∴直线MN为:y-=﹣(x-),
令y=0得:xM=.又∵|MF2|=|F1F2|=2c,∴3c=xM=,解之得:,即e=.
【答案】B
设函数,则的值域是
(A) (B) (C)(D)
【答案】D
已知椭圆(a>b>0),点在椭圆上。
(I)求椭圆的离心率。
(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。
【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.
设函数,则的值域是
(A) (B) (C)(D)
【答案】D
【解析】若,必有.构造函数:,则恒成立,故有函数在x>0上单调递增,即a>b成立.其余选项用同样方法排除.
【答案】A
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com